Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

Equality and Near-Equality in a Nonstandard World
  • Home
  • /
  • Equality and Near-Equality in a Nonstandard World
  1. Home /
  2. Archives /
  3. Vol. 32 No. 1 (2023): March /
  4. Articles

Equality and Near-Equality in a Nonstandard World

Authors

  • Bruno Dinis Departamento de Matemática, Universidade de Évora, Portugal https://orcid.org/0000-0003-2143-3289

DOI:

https://doi.org/10.12775/LLP.2022.018

Keywords

equality, nonstandard analysis, paradoxes of identity

Abstract

In the context of nonstandard analysis, the somewhat vague equality relation of near-equality allows us to relate objects that are indistinguishable but not necessarily equal. This relation appears to enable us to better understand certain paradoxes, such as the paradox of Theseus’s ship, by identifying identity at a time with identity over a short period of time. With this view in mind, I propose and discuss two mathematical models for this paradox.

References

Bair, J., P. Błaszczyk, R. Ely, P. Heinig, and M. Katz, 2018, “ Leibniz’s wellfounded fictions and their interpetations”, Mat. Stud., 49 (2): 186–224.

Bair, J., P. Błaszczyk, P. Heinig, V. Kanovei, and M. Katz, 2020, “Cauchy’s work on integral geometry, centers of curvature, and other applications of infinitesimals”, Real Analysis Exchange, 45 (1): 1–23.

Barnes, J., 2002, The Presocratic Philosophers, Arguments of the Philosophers, Routledge.

Bascelli, T., E. Bottazzi, F. Herzberg, V. Kanovei, K. Katz, M. Katz, T. Nowik, D. Sherry, and S. Shnider, 2014, “Fermat, Leibniz, Euler, and the gang: the true history of the concepts of limit and shadow”, Notices Amer. Math. Soc., 61 (8): 848–864. DOI: http://dx.doi.org/10.1090/noti1149

Bedürftig, T., and R. Murawski, 2018, Philosophy of Mathematics, De Gruyter.

Bender, S., 2019, “Is Leibniz’s principle of the identity of indiscernibles necessary or contingent?”, Philosophers’ Imprint, 19 (42).

Berkeley, G., 2005, “The analyst, or a discourse addressed to an infidel mathematician”, pages 60–92 in W. Ewald (ed.), From Kant to Hilbert Volume 1: A Source Book in the Foundations of Mathematics, Oxford University Press.

Black, M., 1952, “The identity of indiscernibles”, Mind, 61: 153–164.

Bos, H., 1974, “Differentials, higher-order differentials and the derivative in the Leibnizian calculus”, Arch. History Exact Sci., 14: 1–90. DOI: http://dx.doi.org/10.1007/BF00327456

Boursin, J.-L., 1983, Dicionário elementar de matemáticas modernas, Publicações Dom Quixote.

Callot, J.-L., 1992, “Trois leçons d’analyse infinitésimale”, pages 369–381 in J. M. Salanskis and H. Sinaceur (eds.), Le labyrinthe du continu, Springer-Verlag, Paris.

Clark, M., 2012, Paradoxes from A to Z, Routledge.

Cortes, A., 1976, “Leibniz’s principle of the identity of indiscernibles: A false principle”, Philosophy of Science, 43 (4): 491–505. DOI: http://dx.doi.org/10.1086/288707

Deutsch, H. 2008, “Relative identity”, in Stanford Encyclopedia of Philosophy.

di Nasso. M., 1999, “On the foundations of nonstandard mathematics”, Math. Japon., 50 (1): 131–160.

Diener, F., and M. Diener (eds.), 1995, Nonstandard Analysis in Practice, Universitext, Springer-Verlag, Berlin. DOI: http://dx.doi.org/10.1007/978-3-642-57758-1

Diener, F., and G. Reeb, 1989, Analyse non standard, volume 40 of Collection Enseignement des Sciences, Hermann, Paris.

Dinis, B., and I. van den Berg, 2017, “Axiomatics for the external numbers of nonstandard analysis”, J. Logic & Analysis, 9(7): 1–47. DOI: http://dx.doi.org/10.4115/jla.2017.9.7

Dinis, B., and I. van den Berg, 2019, Neutrices and External Numbers: A Flexible Number System, Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, FL. DOI: http://dx.doi.org/10.1201/9780429291456

Fletcher, P., K. Hrbacek, V. Kanovei, M. Katz, C. Lobry, and S. Sanders, 2017, “Approaches to analysis with infinitesimals following Robinson, Nelson, and others”, Real Anal. Exchange, 42 (2): 193–251. DOI: http://dx.doi.org/10.14321/realanalexch.42.2.0193

French, S., 2019, “Identity and individuality in quantum theory”, in E. N. Zalta (ed.), The Stanford Encyclopedia of Philosophy, winter 2019 edition.

Katz, K., and M. Katz, 2010a, “Zooming in on infinitesimal 1 – .9.. in a posttriumvirate era”, Educational Studies in Mathematics, 74 (3): 259–273.

Katz, K., and M. Katz, 2010b, “When is .999... less than 1?”, The Montana Mathematics Enthusiast, 7 (1): 3–30.

Katz, M., and D. Sherry, 2013, “Leibniz’s infinitesimals: their fictionality, their modern implementations, and their foes from Berkeley to Russell and beyond”, Erkenntnis, 78 (3): 571–625. DOI: http://dx.doi.org/10.1007/s10670-012-9370-y

Kunen, K., 1980, Set Theory, vol. 102 of “Studies in Logic and the Foundations of Mathematics”, North-Holland Publishing Co., Amsterdam–New York.

Kusraev, A., and S. Kutateladze, 1994, Nonstandard Methods of Analysis, vol. 291 of “Mathematics and its Applications”, Kluwer Academic Publishers Group, Dordrecht. Translated from the 1990 Russian original by L. Iouzina Tarvainen. DOI: http://dx.doi.org/10.1007/978-94-011-1136-2

Leibniz, G., 1989, Philosophical Essays, edited and translated by R. Ariew and D. Garber, Hackett Classics Series, Hackett Publishing Company.

Locke, J., 2015, An Essay Concerning Human Understanding: With Thoughts On the Conduct of the Understanding, Sagwan Press.

Lutz, R., 1987, Rêveries infinitésimales, Gazette des mathématiciens, 34: 79–87.

McGraw-Hill Dictionary of Athematics, 2003, McGraw-Hill, New York, 2nd edition.

Nelson, E., 1987, Radically Elementary Probability Theory, Annals of Mathematical Studies, vol. 117, Princeton University Press, Princeton, N. J. Noonan, H., 2017, “Relative identity”, pages 1013–1032 in A Companion to the Philosophy of Language, John Wiley and Sons, Ltd. DOI: http://dx.doi.org/10.1002/9781118972090.ch40

Potter, M., 2004, Set Theory and its Philosophy, Oxford University Press, New York. DOI: http://dx.doi.org/10.1093/acprof:oso/9780199269730.001.0001

Quine, W., 1951, “Two dogmas of empiricism”, Philosophical Review, 60 (1): 20–43.

Robinson, A., 1961, “Non-standard analysis”, Nederl. Akad. Wetensch. Proc. Ser. A 64, 23: 432–440.

Robinson, A., 1966, Non-Standard Analysis, North-Holland Publishing Co., Amsterdam.

Teixeira, J., 1999, “Elliptic differential equations and their discretizations”, ProQuest LLC, Ann Arbor, MI.

van den Berg, I., 1987, Nonstandard Asymptotic Analysis, Lecture notes in mathematics 1249, Springer-Verlag. DOI: http://dx.doi.org/10.1007/bfb0077577

van der Corput, J., 1959/1960, “Introduction to the neutrix calculus”, J. Analyse Math., 7: 281–399. DOI: http://dx.doi.org/10.1007/bf02787689

Wittgenstein, L., 1953, Philosophical Investigations, translated by G. E. M. Anscombe, The Macmillan Co., New York.

Logic and Logical Philosophy

Downloads

  • PDF

Published

2022-05-21

How to Cite

1.
DINIS, Bruno. Equality and Near-Equality in a Nonstandard World. Logic and Logical Philosophy. Online. 21 May 2022. Vol. 32, no. 1, pp. 105-118. [Accessed 29 June 2025]. DOI 10.12775/LLP.2022.018.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 32 No. 1 (2023): March

Section

Articles

License

Copyright (c) 2022 Logic and Logical Philosophy

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 1432
Number of citations: 0

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

equality, nonstandard analysis, paradoxes of identity
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop