Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

Fidel Semantics for Propositional and First-Order Version of the Logic of CG’3
  • Home
  • /
  • Fidel Semantics for Propositional and First-Order Version of the Logic of CG’3
  1. Home /
  2. Archives /
  3. Vol. 32 No. 1 (2023): March /
  4. Articles

Fidel Semantics for Propositional and First-Order Version of the Logic of CG’3

Authors

  • Aldo Figallo Orellano https://orcid.org/0000-0001-5844-3371
  • Miguel Pérez-Gaspar Facultad de Ingeniería Universidad Nacional Autónoma de México (UNAM)
  • Everardo Bárcenas Facultad de Ingeniería Universidad Nacional Autónoma de México (UNAM) https://orcid.org/0000-0002-1523-1579

DOI:

https://doi.org/10.12775/LLP.2022.019

Keywords

paraconsistent logics, first-order logics, Fidel semantics

Abstract

Paraconsistent extensions of 3-valued Gödel logic are studied as tools for knowledge representation and nonmonotonic reasoning. Particularly, Osorio and his collaborators showed that some of these logics can be used to express interesting nonmonotonic semantics. CG’3 is one of these 3-valued logics. In this paper, we introduce Fidel semantics for a certain calculus of CG’3 by means of Fidel structures, named CG’3-structures. These structures are constructed from enriched Boolean algebras with a special family of sets. Moreover, we also show that the most basic CG’3-structures coincide with da Costa–Alves’ bi-valuation semantics; this connection is displayed through a Representation Theorem for CG’3-structures. By contrast, we show that for other paraconsistent logics that allow us to present semantics through Fidel structures, this connection is not held. Finally, Fidel semantics for the first-order version of the logic of CG’3 are presented by means of adapting algebraic tools.

References

Burris, S., and H. Sankappanavar, A Course in Universal Algebra, Graduate Texts in Mathematics, vol. 78, Springer, 1981.

Béziau, J-Y., “The paraconsistent logic Z: A possible solution to Jaśkowski’s problem”, Logic and Logical Philosophy, 15, 2 (2006): 99–111. DOI: http://dx.doi.org/10.12775/LLP.2006.006

Borja-Macías, V., and M. Pérez-Gaspar, “Kripke-type semantics for CG’3”, Electronic Notes in Theoretical Computer Science, 328 (2016): 17–29.

Carnielli, W., and M. Coniglio, Paraconsistent Logic: Consistency, Contradiction and Negation, vol. 40, Logic, Epistemology, and the Unity of Science, Basel, Switzerland: Springer International Publishing, 2016. DOI: http://dx.doi.org/10.1007/978-3-319-33205-5

Carnielli, W. A., M. E. Coniglio, R. Podiacki and T. Rodrigues, “On the way to a wider model theory: Completeness theorems for first-order logics of formal inconsistency”, The Review of Symbolic Logic, 7, 3 (2014): 548–578. DOI: http://dx.doi.org/10.1017/S1755020314000148

Ciuciura, J., “Paraconsistency and Sette’s calculus P1”, Logic and Logical

Philosophy, 24 (2015): 265–273. DOI: http://dx.doi.org/10.12775/LLP.2015.003

Ciuciura, J., “Sette’s calculus P1 and some hierarchies of paraconsistent systems”, Journal of Logic and Computation, 30, 5 (2020): 1109–1124.

Ciuciura, J., “On the system CB1 and a lattice of the paraconsistent calculi”, Logic and Logical Philosophy, 29 (2020): 223–237. DOI: http://dx.doi.org/10.12775/LLP.2019.035

Coniglio, M., Figallo-Orellano, A., Hernández-Tello, A. and M. Pérez-Gaspar, “CG’3 as the logic of modal 3-valued Heyting algebras”, Journal of Applied Logic, 9, 1 (2022): 175–197.

da Costa, N., “On the theory of inconsistent formal systems”, Notre Dame Journal of Formal Logic, 15, 4 (1974): 497–510. DOI: http://dx.doi.org/10.1305/ndjfl/1093891487

da Costa, N., and E. Alves, “A semantical analysis of the calculi Cn”, Notre Dame Journal of Formal Logic, 18 (1977): 621–30.

D’Ottaviano, I., “The model extension theorems for J3-theories”, pages 157–173 in Methods in Mathematical Logic, Proceedings of the 6th Latin American Symposium on Mathematical Logic, 1130, Lecture Notes in Mathematics, Springer, Berlin, 1985.

D’Ottaviano, I., “Definability and quantifier elimination for J3-theories”, Studia Logica, 46 (1987): 37–54.

Fidel, M. “The decidability of the calculi Cn”, Reports on Mathematical Logic, 8 (1977): 31–40.

Figallo-Orellano, A., and J. Slagter, “An algebraic study of the first order version of some implicational fragments of the three-valued Łukasiewicz logic”, Computación y Sistemas (2022).

Figallo-Orellano, A., and J. Slagter, “Monteiro’s algebraic notion of maximal consistent theory for Tarskian logics”, Fuzzy Sets and Systems (2022). DOI: http://dx.doi.org/10.1016/j.fss.2022.04.007

Figallo-Orellano, A., M. Pérez-Gaspar J. M. Ramírez-Contreras, “Paraconsistent and paracomplete logics based on k-cyclic modal pseudocomplemented De Morgan algebras”, Studia Logica (2022).

Fitting, M., Intuitionistic Logic, Model Theory and Forcing, Studies in Logic and the Foundations of Mathematics, North-Holland Publishing Co., Amsterdam–London, 1969.

Loparić, A., “A semantical study of some propositional calculi”, The Journal of Non-Classical Logic, 3 (1986): 73–95.

Mendelson, E., Introduction to Mathematical Logic, CRC Press, 2009.

Monteiro, A., “Sur les algèbres de Heyting simetriques”, Portugaliae Math., 39, 1–4 (1980): 1–237.

Martinez, G., “Elimination of quantifiers on Łukasiewicz logics”, Zeitschr. f. math. Logik und Grundlagen d. Math., 35 (1989): 15–21.

Martinez, G., “A model theory based on Łukasiewicz logics” (in Spanish), Master Thesis, Universidad Nacional del Sur, 1989.

Odintsov, S., “Algebraic semantics for paraconsistent Nelson’s logic”, Journal of Logic and Computation, 13, 4 (2003).

Osorio, M., and J. Carballido, “Brief study of G’3 logic”, Journal of Applied Non-Classical Logics, 18, 4 (2008): 475–499.

Osorio, M., J. Carballido and C. Zepeda, “Revisiting Z”, Notre Dame Journal of Formal Logic, 55, 1 (2014): 129–155. DOI: http://dx.doi.org/10.1215/00294527-2377905

Osorio, M., A. Figallo-Orellano and M. Pérez-Gaspar, “A family of genuine and non-algebraizable C-systems”, Journal of Applied Non-Classical Logics, 31, 1 (2021): 56—84.

Osorio, M., J. Navarro, J. Arrazola and V. Borja, “Logics with common weak completions”, Journal of Logic and Computation, 16, 6 (2006): 867–890.

Pearce, D., “Stable inference as intuitionistic validity”, Logic Programming, 38 (1999): 79–91.

Pérez-Gaspar, M., A. Hernández-Tello, J. Arrazola-Ramírez and M. Osorio, “An axiomatic approach to CG’3 logic”, Logic Journal of the IGPL, 28, 6 (2020): 1218–1232.

Wójcicki, R., Lectures on Propositional Calculi, Warsaw, 1984.

Logic and Logical Philosophy

Downloads

  • PDF

Published

2022-05-24

How to Cite

1.
FIGALLO ORELLANO, Aldo, PÉREZ-GASPAR, Miguel and BÁRCENAS, Everardo. Fidel Semantics for Propositional and First-Order Version of the Logic of CG’3. Logic and Logical Philosophy. Online. 24 May 2022. Vol. 32, no. 1, pp.  141-158. [Accessed 18 May 2025]. DOI 10.12775/LLP.2022.019.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 32 No. 1 (2023): March

Section

Articles

License

Copyright (c) 2022 Logic and Logical Philosophy

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 1389
Number of citations: 0

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

paraconsistent logics, first-order logics, Fidel semantics
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop