EF4, EF4-M and EF4-Ł: A companion to BN4 and two modal four-valued systems without strong Łukasiewicz-type modal paradoxes
DOI:
https://doi.org/10.12775/LLP.2021.010Keywords
relevant logics, modal logics, many-valued logics, Belnap-Dunn semantics, modal paradoxes, 4-valued modal logicsAbstract
The logic BN4 was defined by R.T. Brady as a four-valued extension of Routley and Meyer’s basic logic B. The system EF4 is defined as a companion to BN4 to represent the four-valued system of (relevant) implication. The system Ł was defined by J. Łukasiewicz and it is a four-valued modal logic that validates what is known as strong Łukasiewicz-type modal paradoxes. The systems EF4-M and EF4-Ł are defined as alternatives to Ł without modal paradoxes. This paper aims to define a Belnap-Dunn semantics for EF4, EF4-M and EF4-Ł. It is shown that EF4, EF4-M and EF4-Ł are strongly sound and complete w.r.t. their respective semantics and that EF4-M and EF4-Ł are free from strong Łukasiewicz-type modal paradoxes.
References
Anderson, A. R., and N. D. Belnap Jr., Entailment. The Logic of Relevance and Necessity, vol. I, Princeton University Press, 1975.
Anderson, A. R., N. D. Belnap Jr., and J. M. Dunn, Entailment. The Logic of Relevance and Necessity, vol. II, Princeton University Press, 1992.
Belnap Jr., N. D., “Entailment and relevance”, The Journal of Symbolic Logic 25 (1960): 388–389. DOI: https://doi.org/10.2307/2964210
Belnap Jr., N. D., “How a computer should think”, pages 30–55 in G. Ryle (ed.), Contemporary Aspects of Philosophy, Oriel Press Ltd., Stocksfield, 1977.
Belnap Jr., N. D., “A useful four-valued logic”, pages 8–37 in J. M. Dunn and G. Epstein (eds.), Modern Uses of Multiple-Valued Logic, D. Reidel Publishing Co., Dordrecht, 1977.
Beziau, J.-Y., “A new four-valued approach to modal logic”, Logique et Analyse 54 (2011): 109–121.
Brady, R. T., “Completeness proofs for the systems RM3 and BN4”, Logique et Analyse 25 (1982): 9–32.
Dunn, J.M., “Intuitive semantics for first-degree entailments and “Coupled Trees.””, Philosophical Studies 29 (1976): 149–168.
Dunn, J. M., “Partiality and its Dual”, Studia Logica 65 (2000): 5–40. DOI: https://doi.org/10.1023/A:1026740726955
Font, J. M., and M. Rius, “An abstract algebraic approach to tetravalent modal logics”, The Journal of Symbolic Logic 65 (2000): 481–518. DOI: https://doi.org/10.2307/2586552
Font, J. M., and P. Hájek, “Łukasiewicz and modal logic (2000)”, pages 184–198 in T. Childers and J. Palomaki (eds.), Between Words and Worlds, Filosofia, Prague, 2000.
Font, J. M., and P. Hajek, “On Łukasiewicz four-valued modal logic”, Studia Logica 70, 2 (2002): 157–182. DOI: https://doi.org/10.1023/A:1015111314455
González, C., MaTest, 2012. Available at http://ceguel.es/matest (last access 12/12/2019).
Hughes, G. E., and M. J. Cresswell, An Introduction to Modal Logic, Methuen, Londres, 1968.
Łukasiewicz, J., “A system of modal logic”, Journal of Computing Systems 1 (1953): 111–149.
Méndez, J. M., and G. Robles, “Strengthening Brady’s paraconsistent 4-valued logic BN4 with truth-functional modal operators”, Journal of Logic, Language and Information 25, 2 (2016): 163–189. DOI: https://doi.org/10.1007/s10849-016-9237-8
Méndez, J. M., and G. Robles, “The logic determined by Smiley’s matrix for Anderson and Belnap’s first-degree entailment logic”, Journal of Applied Non-Classical Logics 26 (2016): 47–68. DO: https://doi.org/10.1080/11663081.2016.1153930
Méndez, J. M., G. Robles and F. Salto, “An interpretation of Łukasiewicz’s 4-valued modal logic” Journal of Philosophical Logic 45 (2016): 73–87. DOI: https://doi.org/10.1007/s10992-015-9362-x
Meyer, R. K., S. Giambrone and R. T. Brady, “Where gamma fails”, Studia Logica 43 (1984), 247–256. DOI: https://doi.org/10.1007/BF02429841
Odintsov, S. P., and H. Wansing, “Modal logics with Belnapian truth values”, Journal of Applied Non-Classical Logics 20 (2010): 279–301. DOI: https://doi.org/10.3166/jancl.20.279-304
Restall, G., Substructural Logics, New York, Routledge, 2000.
Robles, G., and J. M. Méndez, “A companion to Brady’s 4-valued relevant logic BN4: The 4-valued logic of entailment E4”, Logic Journal of the IGPL 45 (2016): 73–87. DOI: https://doi.org/10.1093/jigpal/jzw011
Slaney, J. K., “MaGIC, matrix generator for implication connectives: version 2.1, notes and guide”, 1995, Canberra: Australian National University. Available at: http://users.cecs.anu.edu.au/~jks/mag
Slaney, J. K., “Relevant logic and paraconsistency”, pages 270–293 in L. Bertossi, A. Hunter and T. Schaub (eds.), Inconsistency Tolerance, vol. 3300 of “Lecture Notes in Computer Science”, 2005. DOI: https://doi.org/10.1007/978-3-540-30597-2_9
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Logic and Logical Philosophy
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 1089
Number of citations: 0