Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

EF4, EF4-M and EF4-Ł: A companion to BN4 and two modal four-valued systems without strong Łukasiewicz-type modal paradoxes
  • Home
  • /
  • EF4, EF4-M and EF4-Ł: A companion to BN4 and two modal four-valued systems without strong Łukasiewicz-type modal paradoxes
  1. Home /
  2. Archives /
  3. Vol. 31 No. 1 (2022): March /
  4. Articles

EF4, EF4-M and EF4-Ł: A companion to BN4 and two modal four-valued systems without strong Łukasiewicz-type modal paradoxes

Authors

  • José Miguel Blanco Faculty of Informatics, Masaryk University https://orcid.org/0000-0001-9460-8540

DOI:

https://doi.org/10.12775/LLP.2021.010

Keywords

relevant logics, modal logics, many-valued logics, Belnap-Dunn semantics, modal paradoxes, 4-valued modal logics

Abstract

The logic BN4 was defined by R.T. Brady as a four-valued extension of Routley and Meyer’s basic logic B. The system EF4 is defined as a companion to BN4 to represent the four-valued system of (relevant) implication. The system Ł was defined by J. Łukasiewicz and it is a four-valued modal logic that validates what is known as strong Łukasiewicz-type modal paradoxes. The systems EF4-M and EF4-Ł are defined as alternatives to Ł without modal paradoxes. This paper aims to define a Belnap-Dunn semantics for EF4, EF4-M and EF4-Ł. It is shown that EF4, EF4-M and EF4-Ł are strongly sound and complete w.r.t. their respective semantics and that EF4-M and EF4-Ł are free from strong Łukasiewicz-type modal paradoxes.

References

Anderson, A. R., and N. D. Belnap Jr., Entailment. The Logic of Relevance and Necessity, vol. I, Princeton University Press, 1975.

Anderson, A. R., N. D. Belnap Jr., and J. M. Dunn, Entailment. The Logic of Relevance and Necessity, vol. II, Princeton University Press, 1992.

Belnap Jr., N. D., “Entailment and relevance”, The Journal of Symbolic Logic 25 (1960): 388–389. DOI: https://doi.org/10.2307/2964210

Belnap Jr., N. D., “How a computer should think”, pages 30–55 in G. Ryle (ed.), Contemporary Aspects of Philosophy, Oriel Press Ltd., Stocksfield, 1977.

Belnap Jr., N. D., “A useful four-valued logic”, pages 8–37 in J. M. Dunn and G. Epstein (eds.), Modern Uses of Multiple-Valued Logic, D. Reidel Publishing Co., Dordrecht, 1977.

Beziau, J.-Y., “A new four-valued approach to modal logic”, Logique et Analyse 54 (2011): 109–121.

Brady, R. T., “Completeness proofs for the systems RM3 and BN4”, Logique et Analyse 25 (1982): 9–32.

Dunn, J.M., “Intuitive semantics for first-degree entailments and “Coupled Trees.””, Philosophical Studies 29 (1976): 149–168.

Dunn, J. M., “Partiality and its Dual”, Studia Logica 65 (2000): 5–40. DOI: https://doi.org/10.1023/A:1026740726955

Font, J. M., and M. Rius, “An abstract algebraic approach to tetravalent modal logics”, The Journal of Symbolic Logic 65 (2000): 481–518. DOI: https://doi.org/10.2307/2586552

Font, J. M., and P. Hájek, “Łukasiewicz and modal logic (2000)”, pages 184–198 in T. Childers and J. Palomaki (eds.), Between Words and Worlds, Filosofia, Prague, 2000.

Font, J. M., and P. Hajek, “On Łukasiewicz four-valued modal logic”, Studia Logica 70, 2 (2002): 157–182. DOI: https://doi.org/10.1023/A:1015111314455

González, C., MaTest, 2012. Available at http://ceguel.es/matest (last access 12/12/2019).

Hughes, G. E., and M. J. Cresswell, An Introduction to Modal Logic, Methuen, Londres, 1968.

Łukasiewicz, J., “A system of modal logic”, Journal of Computing Systems 1 (1953): 111–149.

Méndez, J. M., and G. Robles, “Strengthening Brady’s paraconsistent 4-valued logic BN4 with truth-functional modal operators”, Journal of Logic, Language and Information 25, 2 (2016): 163–189. DOI: https://doi.org/10.1007/s10849-016-9237-8

Méndez, J. M., and G. Robles, “The logic determined by Smiley’s matrix for Anderson and Belnap’s first-degree entailment logic”, Journal of Applied Non-Classical Logics 26 (2016): 47–68. DO: https://doi.org/10.1080/11663081.2016.1153930

Méndez, J. M., G. Robles and F. Salto, “An interpretation of Łukasiewicz’s 4-valued modal logic” Journal of Philosophical Logic 45 (2016): 73–87. DOI: https://doi.org/10.1007/s10992-015-9362-x

Meyer, R. K., S. Giambrone and R. T. Brady, “Where gamma fails”, Studia Logica 43 (1984), 247–256. DOI: https://doi.org/10.1007/BF02429841

Odintsov, S. P., and H. Wansing, “Modal logics with Belnapian truth values”, Journal of Applied Non-Classical Logics 20 (2010): 279–301. DOI: https://doi.org/10.3166/jancl.20.279-304

Restall, G., Substructural Logics, New York, Routledge, 2000.

Robles, G., and J. M. Méndez, “A companion to Brady’s 4-valued relevant logic BN4: The 4-valued logic of entailment E4”, Logic Journal of the IGPL 45 (2016): 73–87. DOI: https://doi.org/10.1093/jigpal/jzw011

Slaney, J. K., “MaGIC, matrix generator for implication connectives: version 2.1, notes and guide”, 1995, Canberra: Australian National University. Available at: http://users.cecs.anu.edu.au/~jks/mag

Slaney, J. K., “Relevant logic and paraconsistency”, pages 270–293 in L. Bertossi, A. Hunter and T. Schaub (eds.), Inconsistency Tolerance, vol. 3300 of “Lecture Notes in Computer Science”, 2005. DOI: https://doi.org/10.1007/978-3-540-30597-2_9

Logic and Logical Philosophy

Downloads

  • PDF

Published

2021-08-14

How to Cite

1.
BLANCO, José Miguel. EF4, EF4-M and EF4-Ł: A companion to BN4 and two modal four-valued systems without strong Łukasiewicz-type modal paradoxes. Logic and Logical Philosophy. Online. 14 August 2021. Vol. 31, no. 1, pp. 75-104. [Accessed 25 December 2025]. DOI 10.12775/LLP.2021.010.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 31 No. 1 (2022): March

Section

Articles

License

Copyright (c) 2021 Logic and Logical Philosophy

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 1259
Number of citations: 0

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

relevant logics, modal logics, many-valued logics, Belnap-Dunn semantics, modal paradoxes, 4-valued modal logics
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop