Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

The Rule of Existential Generalisation and Explicit Substitution
  • Home
  • /
  • The Rule of Existential Generalisation and Explicit Substitution
  1. Home /
  2. Archives /
  3. Vol. 31 No. 1 (2022): March /
  4. Articles

The Rule of Existential Generalisation and Explicit Substitution

Authors

  • Jiří Raclavský Department of Philosophy, Masaryk University, Brno https://orcid.org/0000-0002-5123-9965

DOI:

https://doi.org/10.12775/LLP.2021.011

Keywords

existential generalisation, quantifying in, explicit substitution, hyperintensional logic, natural deduction in sequent style

Abstract

The present paper offers the rule of existential generalization (EG) that is uniformly applicable within extensional, intensional and hyperintensional contexts. In contradistinction to Quine and his followers, quantification into various modal contexts and some belief attitudes is possible without obstacles. The hyperintensional logic deployed in this paper incorporates explicit substitution and so the rule (EG) is fully specified inside the logic. The logic is equipped with a natural deduction system within which (EG) is derived from its rules for the existential quantifier, substitution and functional application. This shows that (EG) is not primitive, as often assumed even in advanced writings on natural deduction. Arguments involving existential generalisation are shown to be valid if the sequents containing their premises and conclusions are derivable using the rule (EG). The invalidity of arguments seemingly employing (EG) is explained with recourse to the definition of substitution.

References

Abadi, M., L. Cardelli, P. Curien, and J. Levy, 1991, “Explicit substitutions”, Journal of Functional Programming 1 (4): 375–416. DOI: https://doi.org/10.1017/S0956796800000186

Berto, F., and D. Nolan, 2021, “Hyperintensionality”, in E. N. Zalta (ed.), The Stanford Encyclopedia of Philosophy, Spring 2021 edition. https://plato.stanford.edu/archives/spr2021/entries/hyperintensionality/

Blackburn, P., M. de Rijke, and Y. Venema, 2001, Modal Logic, Cambridge University Press.

Blamey, S., 2002, “Partial logic”, pages 261–353 in D. Gabbay and F. Guenthner (eds.), Handbook of Philosophical Logic 5, Springer. DOI: https://doi.org/10.1007/978-94-017-0458-8_5

Cresswell, M. J., 1975, “Hyperintensional logic”, Studia Logica 34 (1): 26–38. DOI: https://doi.org/10.1007/BF02314421

Duží, M., and B. Jespersen, 2015, “Transparent quantification into hyperintensional objectual attitudes”, Synthese 192 (3): 635–677. DOI: https://doi.org/10.1007/s11229-014-0578-z

Farmer, W. M., 1990, “A partial functions version of Church’s simple theory of types”, Journal of Symbolic Logic 55 (3): 1269–1291. DOI: https://doi.org/10.2307/2274487

Feferman, S., 1995, “Definedness”, Erkenntnis 43 (3): 295–320. DOI: https://doi.org/10.1007/BF01135376

Fitting, M., 2015, “Intensional logic”, in E. N. Zalta (ed.), The Stanford Encyclopedia of Philosophy, Summer 2015 edition. http://plato.stanford.edu/archives/sum2015/entries/logic-intensional

Girard, J., P. Taylor, and Y. Lafont, 1989, Proofs and Types, Cambridge University Press.

Hintikka, J., 1975, “Impossible possible worlds vindicated”, Journal of Philosophical Logic 4 (4): 475–484. DOI: https://doi.org/10.1007/BF00558761

Indrzejczak, A., 2010, Natural Deduction, Hybrid Systems and Modal Logics, Springer.

Kaplan, D., “Quantifying in”, 1968, Synthese 19 (1–2): 178–214. DOI: https://doi.org/10.1007/BF00568057

Kuchyňka, P., and J. Raclavský, 2021 ,“β-reduction-by-name, by-value and η-reduction in partial type λ-calculus/partial type theory”, Logic Journal of IGPL, cond. accepted.

Lewis, D. K., 1970, “General semantics”, Synthese 22 (1–2): 18–67. DOI: https://doi.org/10.1007/BF00413598

Montague, R., 1974, Formal Philosophy. Selected Papers of Richard Montague edited by R. Thomason, Yale University Press.

Moschovakis, Y. N., 2005, “A logical calculus of meaning and synonymy”, Linguistics and Philosophy 29 (1): 27–89. DOI: https://doi.org/10.1007/s10988-005-6920-7

Muskens, R., 1995, Meaning and Partiality, CSLI.

Muskens, R., 2005, “Sense and the computation of reference”, Linguistics and Philosophy 28 (4): 473–504. DOI: https://doi.org/10.1007/s10988-004-7684-1

Muskens, R., 2007, “Higher order modal logic”, pages 621–653 in P. Blackburn, J. F. A. K. van Benthem, and F. Wolte (eds.), The Handbook of Modal Logic, Elsevier. DOI: https://doi.org/10.1016/S1570-2464(07)80013-9

Negri, S., J. von Plato, and A. Ranta, 2001, Structural Proof Theory, Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511527340

Pezlar, I., 2016, “Towards a more general concept of inference”, Logica Universalis 8 (1): 61–81. DOI: https://doi.org/10.1007/s11787-014-0095-3

Prawitz, D., 2006, Natural Deduction: A Proof-Theoretical Study, Dover Publications.

Queiroz, R. J G B de, A. G de Oliveira, D. M. Gabbay, The Functional Interpretation of Logical Deduction, 2011, World Scientific.

Quine, W. V. O., 1943, “Notes on existence and necessity”, The Journal of Philosophy 40 (5): 113–127. DOI: https://doi.org/10.2307/2017458

Quine, W. V. O., 1956, “Quantifiers and propositional attitudes”, The Journal of Philosophy 53 (5): 177–187. DOI: https://doi.org/10.2307/2022451

Raclavský, J., 2009, Jména a deskripce: logicko-sémantická zkoumání (in Czech, Names and Descriptions: Logico-Semantical Considerations), Nakladatelství Olomouc.

Raclavský, J., 2010, “On partiality and Tichý’s Transparent Intensional Logic”, Hungarian Philosophical Review 54 (4): 120–128.

Raclavský, J., 2011, “Semantic concept of existential presupposition”, Human Affairs 21 (3): 249–261. DOI: https://doi.org/10.2478/s13374-011-0026-4

Raclavský, J., 2014, “On interaction of semantics and deduction in Transparent Intensional Logic (Is Tichý’s logic a logic?)”, Logic and Logical Philosophy 23 (1): 57–68. DOI: https://doi.org/10.12775/LLP.2013.035

Raclavský, J., 2014, “Explicating truth in Transparent Intensional Logic”, pages 167–177 in R. Ciuni, H. Wansing, and C. Willkommen (eds.), Recent Trends in Philosophical Logic, Springer Verlag. DOI: https://doi.org/10.1007/978-3-319-06080-4_12

Raclavský, J., 2018, “Existential import and relations of categorical and modal categorical statements”, Logic and Logical Philosophy 27 (3): 271–300. DOI: https://doi.org/10.12775/LLP.2017.026

Raclavský, J., 2020, Belief Attitudes, Fine-Grained Hyperintensionality and Type-Theoretic Logic, College Publications (Studies in Logic 88).

Raclavský, J., P. Kuchyňka, and I. Pezlar, 2015, Transparent Intensional Logic as Characteristica Universalis and Calculus Ratiocinator (in Czech), Munipress.

Raclavský, J. and I. Pezlar, 2019, “Explicitní/implicitní přesvědčení a derivační systémy” (in Czech,

“Explicit/implicit belief and derivation systems”, Filosofický časopis 67 (1): 89–120.

Russell, B., 1905, “On denoting”, Mind 14 (56): 479–493.

Schroeder-Heister, P., 2006, “Validity concepts in proof-theoretic semantics”, Synthese 148 (3): 525–571.

Tichý, P., “Two kinds of intensional logic”, 1978, Epistemologia 1 (1): 143–164.

Tichý, P., “The logic of temporal discourse”, 1980, Linguistics and Philosophy 3 (3): 343–369. DOI: https://doi.org/10.1007/BF00401690

Tichý, P., “Foundations of partial type theory”, 1982, Reports on Mathematical Logic 14: 57–72.

Tichý, P., 1986, “Constructions”, Philosophy of Science 53 (4): 514–534. DOI: https://doi.org/10.1086/289338

Tichý, P., 1986, “Indiscernibility of identicals”, Studia Logica 45 (3): 251–273. DOI: https://doi.org/10.1007/BF00375897

Tichý, P., 1988, The Foundations of Frege’s Logic, Walter de Gruyter.

Tichý, P., 2004, Pavel Tichý’s Collected Papers in Logic and Philosophy, V. Svoboda, B. Jespersen, C. Cheyne (eds.), The University of Otago Press and Filosofia.

Williamson, T., 2013, Modal Logic as Metaphysics, Oxford University Press.

Logic and Logical Philosophy

Downloads

  • PDF

Published

2021-08-30 — Updated on 2021-10-10

How to Cite

1.
RACLAVSKÝ, Jiří. The Rule of Existential Generalisation and Explicit Substitution. Logic and Logical Philosophy. Online. 10 October 2021. Vol. 31, no. 1, pp. 105-141. [Accessed 20 May 2025]. DOI 10.12775/LLP.2021.011.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 31 No. 1 (2022): March

Section

Articles

License

Copyright (c) 2021 Logic and Logical Philosophy

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 1433
Number of citations: 0

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

existential generalisation, quantifying in, explicit substitution, hyperintensional logic, natural deduction in sequent style
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop