Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

Informal Provability, First-Order BAT Logic and First Steps Towards a Formal Theory of Informal Provability
  • Home
  • /
  • Informal Provability, First-Order BAT Logic and First Steps Towards a Formal Theory of Informal Provability
  1. Home /
  2. Archives /
  3. Vol. 31 No. 3 (2022): September /
  4. Articles

Informal Provability, First-Order BAT Logic and First Steps Towards a Formal Theory of Informal Provability

Authors

  • Pawel Pawlowski Gdańsk University https://orcid.org/0000-0002-4993-6454
  • Rafal Urbaniak Gdańsk University https://orcid.org/0000-0002-6321-2866

DOI:

https://doi.org/10.12775/LLP.2021.016

Keywords

non-deterministic logics, informal provability, BAT logic

Abstract

BAT is a logic built to capture the inferential behavior of informal provability. Ultimately, the logic is meant to be used in an arithmetical setting. To reach this stage it has to be extended to a first-order version. In this paper we provide such an extension. We do so by constructing non-deterministic three-valued models that interpret quantifiers as some sorts of infinite disjunctions and conjunctions. We also elaborate on the semantical properties of the first-order system and consider a couple of its strengthenings. It turns out that obtaining a sensible strengthening is not straightforward. We prove that most strategies commonly used for strengthening non-deterministic logics fail in our case. Nevertheless, we identify one method of extending the system which does not.

References

Alexander, S., 2013, “A machine that knows its own code”, arXiv preprint arXiv:1305.6080. DOI: https://doi.org/10.1007/s11225-013-9491-6

Antonutti Marfori, M., 2010, “Informal proofs and mathematical rigour”, Studia Logica 96: 261–272. DOI: https://doi.org/10.1007/s11225-010-9280-4

Antonutti Marfori, M., and L. Horsten, 2016, “Epistemic Church’s thesis and absolute undecidability”, page 254 in Gödel’s Disjunction: The Scope and Limits of Mathematical Knowledge. DOI: https://doi.org/10.1093/acprof:oso/9780198759591.003.0011

Antonutti Marfori, M., and L. Horsten, 2018, “Human-effective computability”, Philosophia Mathematica 27 (1): 61–87. DOI: https://doi.org/10.1093/philmat/nky011

Arai, T., 1998, “Some results on cut-elimination, provable well-orderings, induction and reflection”, Annals of Pure and Applied Logic 95 (1–3): 93–184. DOI: https://doi.org/10.1016/s0168-0072(98)00020-7

Beklemishev, L., 1997, “Induction rules, reflection principles, and provably recursive functions”, Annals of Pure and Applied Logic 85 (3): 193–242. DOI: https://doi.org/10.1016/s0168-0072(96)00045-0

Beklemishev, L., 2003, “Proof-theoretic analysis by iterated reflection”, Archive for Mathematical Logic 42 (6): 515–55. DOI: https://doi.org/10.1007/978-3-319-22156-4_9

Bellantoni, S., and M. Hofmann, 2002, “A new ‘feasible’ arithmetic” The Journal of Symbolic Logic 67 (1): 104–116. DOI: https://doi.org/10.2178/jsl/1190150032

Carlson, T., 2016, “Collapsing knowledge and epistemic Church’s thesis”, pages 129–147 in L. Horsten and P. Welch (eds.), Gödel’s Disjunction: The scope and limits of mathematical knowledge, Oxford Scholarship Online. DOI: https://doi.org/10.1093/acprof:oso/9780198759591.003.0006

Carlson, T. J., 2000, “Knowledge, machines, and the consistency of Reinhardt’s strong mechanistic thesis”, Annals of Pure and Applied Logic 105 (1–3): 51–82. DOI: https://doi.org/10.1016/s0168-0072(99)00048-2

Enderton, H., 1977, Elements of Set Theory, Academic Press, New York. DOI: https://doi.org/10.1016/C2009-0-22079-4

Flagg, R., 1985, “Church’s thesis is consistent with epistemic arithmetic”, pages 121–172 in S. Shapiro (ed.), Intensional Mathematics, Studies in Logic and the Foundations of Mathematics, Vol. 113, North-Holland. DOI: https://doi.org/10.1016/s0049-237x(08)70142-3

Flagg, R., and H. Friedman, 1986, “Epistemic and intuitionistic formal systems”, Annals of Pure and Applied Logic 32 (1): 53–60. DOI: https://doi.org/10.1016/0168-0072(86)90043-6

Friedman, H., and M. Sheard, 1989, “The equivalence of the disjunction and existence properties for modal arithmetic”, The Journal of Symbolic Logic 54 (4): 1456–1459. DOI: https://doi.org/10.2307/2274825

Goodman, N. D., 1984, “Epistemic arithmetic is a conservative extension of intuitionistic arithmetic”, Journal of Symbolic Logic 49 (1): 192–203. DOI: https://doi.org/10.2307/2274102

Goodman, N. D., 1986, “Flagg realizability in arithmetic”, The Journal of Symbolic Logic 51 (2): 387–392. DOI: https://doi.org/10.2307/2274062

Halbach, V., 2011, Axiomatic Theories of Truth, Cambridge University Press.

Halbach, V., and L. Horsten, 2000, “Two proof-theoretic remarks on EA + ECT”, Mathematical Logic Quarterly 46 (4): 461–466. DOI: doi.org/10.1002/1521-3870(200010)46:4<461::aid-malq461>3.0.co;2-i

Heylen, J., 2013, “Modal-epistemic arithmetic and the problem of quantifying in”, Synthese 190 (1): 89–111. DOI: https://doi.org/10.1007/s11229-012-0154-3

Horsten, L., 1994, “Modal-epistemic variants of Shapiro’s system of epistemic arithmetic”, Notre Dame Journal of Formal Logic 35 (2): 284–291. DOI: https://doi.org/10.1305/ndjfl/1094061865

Horsten, L., 1996, “Reflecting in epistemic arithmetic”, The Journal of Symbolic Logic 61: 788–801. DOI: https://doi.org/10.2307/2275785

Horsten, L., 1997, “Provability in principle and controversial constructivistic principles”, Journal of Philosophical Logic 26 (6): 635–660. DOI: https://doi.org/10.1023/a:1017954806119

Horsten, L., 1998, “In defence of epistemic arithmetic”, Synthese 116: 1–25.DOI: https://doi.org/10.1023/A:1005016405987

Horsten, L., 2002, “An axiomatic investigation of provability as a primitive predicate”, pages 203–220 in V. Halbach and L. Horsten (eds.), Principles of Truth, Hansel-Hohenhausen. DOI: https://doi.org/10.1515/9783110332728.203

Horsten, L., 2006, “Formalizing Church’s thesis”, Church’s Thesis After 70: 253–267. DOI: https://doi.org/10.1515/9783110325461.253

Kearns, J. T., 1981, “Modal semantics without possible worlds”, The Journal of Symbolic Logic 46 (1): 77–86. DOI: https://doi.org/10.2307/2273259

Koellner, P., 2016, “Gödel’s disjunction”, in L. Horsten and P. Welch (eds.), Gödel’s Disjunction: The Scope and Limits of Mathematical Knowledge, Oxford Scholarship Online. DOI: https://doi.org/10.1093/acprof:oso/9780198759591.003.0007

Kripke, S. A., 1975, “Outline of a theory of truth”, Journal of Philosophy 72 (19): 690–716. DOI: https://doi.org/10.2307/2024634

Leitgeb, H., 2009, “On formal and informal provability”, pages 263–299 in O. Bueno and Ø. Linnebo (eds.), New Waves in Philosophy of Mathematics, New York: Palgrave Macmillan. DOI: https://doi.org/10.1057/9780230245198_13

Montague, R., 1963, “Syntactical treatments of modality, with corollaries on reflexion principles and finite axiomatizability”, Acta Philosophica Fennica (16): 153–167. DOI: https://doi.org/10.2307/2271809

Myhill, J., 1960, “Some remarks on the notion of proof”, Journal of Philosophy 57 (14): 461–471. DOI: https://doi.org/10.2307/2023664

Omori, H., and D. Skurt, 2016, “More modal semantics without possible worlds”, IfCoLog Journal of Logics and their Applications 3 (5): 815–845.

Pawlowski, P., and R. Urbaniak, 2018, “Many-valued logic of informal provability: A non-deterministic strategy”, The Review of Symbolic Logic 11 (2): 207–223. DOI: https://doi.org/10.1017/S1755020317000363

Rav, Y., 1999, “Why do we prove theorems?”, Philosophia Mathematica 7 (1): 5–41. DOI: https://doi.org/10.1093/philmat/7.1.5

Rav, Y., 2007, “A critique of a formalist-mechanist version of the justification of arguments in mathematicians’ proof practices”, Philosophia Mathematica 15 (3): 291–320. DOI: https://doi.org/10.1093/philmat/nkm023

Reinhardt, W. N., 1985, “The consistency of a variant of, Church’s thesis with an axiomatic theory of an epistemic notion”, Revista Colombiana de Matemáticas 19 (1-2): 177–200.

Reinhardt, W. N., 1986, “Epistemic theories and the interpretation of Gödel’s incompleteness theorems”, Journal of Philosophical Logic 15 (4): 427–74. DOI: https://doi.org/10.1007/bf00243392

Rin, B. G., and S. Walsh, 2016, “Realizability semantics for quantified modal logic: Generalizing Flagg’s 1985 construction”, The Review of Symbolic Logic 9 (4): 752–809. DOI: https://doi.org/10.1017/S1755020316000095

Shapiro, S., 1985, “Epistemic and intuitionistic arithmetic”, in S. Shapiro (ed.), Intensional Mathematics, Studies in Logic and the Foundations of Mathematics, Vol. 113, North-Holland. DOI: https://doi.org/10.1016/s0049-237x(08)70138-1

Stern, J., 2015, Toward Predicate Approaches to Modality, Trends in Logic, Springer. DOI: https://doi.org/10.1007/978-3-319-22557-9

Tanswell, F., 2015, “A problem with the dependence of informal proofs on formal proofs”, Philosophia Mathematica 23 (3): 295–310. DOI: https://doi.org/10.1093/philmat/nkv008

Logic and Logical Philosophy

Downloads

  • PDF

Published

2021-11-29

How to Cite

1.
PAWLOWSKI, Pawel & URBANIAK, Rafal. Informal Provability, First-Order BAT Logic and First Steps Towards a Formal Theory of Informal Provability. Logic and Logical Philosophy [online]. 29 November 2021, T. 31, nr 3, s. 501–527. [accessed 7.6.2023]. DOI 10.12775/LLP.2021.016.
  • PN-ISO 690 (Polish)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 31 No. 3 (2022): September

Section

Articles

License

Copyright (c) 2021 Logic and Logical Philosophy

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 1295
Number of citations: 0

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

non-deterministic logics, informal provability, BAT logic
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Karmelitański Instytut Duchowości w Krakowie
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop