Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zarejestruj
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Archiwum
  • Prace online
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Rada redakcyjna
    • Proces recenzji
    • Komitet Logic and Logical Philosophy
    • Polityka Open Access
    • Polityka prywatności
    • Kontakt
  • Zarejestruj
  • Zaloguj
  • Język:
  • English
  • Język Polski

Logic and Logical Philosophy

Simulation Logic
  • Strona domowa
  • /
  • Simulation Logic
  1. Strona domowa /
  2. Archiwum /
  3. Tom 23 Nr 3 (2014): September /
  4. Artykuły

Simulation Logic

Autor

  • Gerard Allwein Department of Logic, Nicolaus Copernicus University
  • William L. Harrison University of Missouri, Columbia, Missouri
  • David Andrews University of Arkansas, Fayetteville, Arkansas

DOI:

https://doi.org/10.12775/LLP.2013.027

Słowa kluczowe

modal logic, simulations, Hilbert systems, Kripke, modal algebras

Abstrakt

Simulation relations have been discovered in many areas: Computer Science, philosophical and modal logic, and set theory. However, the simulation condition is strictly a first-order logic statement. We extend modal logic with modalities and axioms, the latter’s modeling conditions are the simulation conditions. The modalities are normal, i.e., commute with either conjunctions or disjunctions and preserve either Truth or Falsity (respectively). The simulations are considered arrows in a category where the objects are descriptive, general frames. One can augment the simulation modalities by axioms for requiring the underlying modeling simulations to be bisimulations or to be p-morphisms. The modal systems presented are multi-sorted and both sound and complete with respect to their algebraic and Kripke semantics.

Biogramy autorów

William L. Harrison - University of Missouri, Columbia, Missouri

Dept. of Computer Science

David Andrews - University of Arkansas, Fayetteville, Arkansas

Dept. of Computer Science and Computer Engineering

Bibliografia

Adamek, J., and J. Rosicky, Locally Presentable and Accessible Categories, London Mathematical Society, 1994. Lecture Note Series 189.

Gerard Allwein, G., and J.M. Dunn, “Kripke models for linear logic”, Journal of Symbolic Logic, 58 (1993): 514–545. DOI: 10.2307/2275217

Allwein, G., and W.L. Harrison, “Partially ordered modalities”, pages 1–20 in Proceedings of the Advances in Modal Logic Conference, 2010, Springer-Verlag, 2010.

Birkhoff, G., and J.D. Lipson, “Heterogeneous algebras”, Journal of Computational Theory, 8 (1968): 115–133. DOI: 10.1016/S0021-9800(70)80014-X

Blackburn, P., M. de Rijke, and Y. Venema, Modal Logic, Cambridge University Press, 2001. Cambridge Tracts in Theoretical Computer Science, No. 53.

Chellas, B.F., Modal Logic: An Introduction, Cambridge University Press, 1980.

Chou, Ching-Tsun, “A simple treatment of property preservation via simulation”, Technical Report, Department of Computer Science, University of California at Los Angeles, 1995.

Dummett, M.A.E., and E.J. Lemmon, “Modal logics between S4 and S5”, Zeitschrift für mathematische Logik and Grundlagen der Mathematik, 5 (1959): 250–264.

Dunn, J.M., “Gaggle theory: An abstraction of galois connections and residuation with applications to negation and various logical operations”, pages 31–51 in Logics in AI, Proceedings European Workshop JELIA, LNCS 478, Springer-Verlag, 1990.

Dunn, J.M., and G. Hardegree, Algebraic Methods in Philosophical Logic, Oxford Logic Guides 41. Oxford University Press, 2001.

Freyd, P.J., and A. Scedrov, Categories and Allegories, North-Holland, 1990.

Kupke, C., A. Kurz, and Y. Venema, “Stone coalgebras”, pages 170–190 in Coalgebraic Methods in Computer Science, Electronic Notes in Theoretical Computer Science, H.P. Gumm (ed.), volume 82 of 1, 2003.

Lemmon, E.J., “An Introduction to Modal Logic: The “Lemmon Notes””, American Philosophical Quarterly Monograph Series, 11, 1977.

Meyer, R.K., “New axiomatics for relevant logics. I”, Journal of Philosophical Logic, 3 (1974): 53–86. DOI: 10.1007/BF00652071

Sangiorgi, D., “On the origins of bisimulation and coinduction”, ACM Trans. Program. Lang. Syst., 31 (2009), 4:15:1–15:41. DOI: 10.1145/1516507.1516510

Sangiorgi, D.. Introduction to Bisimulation and Coinduction, Cambridge University Press, 2012.

Szor, P., The Art of Computer Virus Research and Defense, AddisonWesley Professional, 2005.

Wells, Ch., and M. Barr, “The formal description of data types using sketches”, pages 490–527 in LNCS 298, Mathematical Foundations of Programming Language Semantics, 1987.

Logic and Logical Philosophy

Pobrania

  • PDF (English)

Opublikowane

15.09.2013

Jak cytować

1.
ALLWEIN, Gerard, HARRISON, William L. & ANDREWS, David. Simulation Logic. Logic and Logical Philosophy [online]. 15 wrzesień 2013, T. 23, nr 3, s. 277–299. [udostępniono 29.6.2025]. DOI 10.12775/LLP.2013.027.
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Tom 23 Nr 3 (2014): September

Dział

Artykuły

Statystyki

Liczba wyświetleń i pobrań: 495
Liczba cytowań: 2

Crossref
Scopus
Google Scholar
Europe PMC

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Informacje

  • dla czytelników
  • dla autorów
  • dla bibliotekarzy

Newsletter

Zapisz się Wypisz się

Język / Language

  • English
  • Język Polski

Tagi

Szukaj przy pomocy tagu:

modal logic, simulations, Hilbert systems, Kripke, modal algebras
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa