Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

Hintikka and Cresswell on logical omniscience
  • Home
  • /
  • Hintikka and Cresswell on logical omniscience
  1. Home /
  2. Archives /
  3. Vol. 15 No. 4 (2006) /
  4. Articles

Hintikka and Cresswell on logical omniscience

Authors

  • Mark Jago University of Nottingham

DOI:

https://doi.org/10.12775/LLP.2006.019

Keywords

logical omniscience, epistemic logic, nonclassical logics

Abstract

I discuss three ways of responding to the logical omniscience problems faced by traditional ‘possible worlds’ epistemic logics. Two of these responses were put forward by Hintikka and the third by Cresswell; all three have been influential in the literature on epistemic logic. I show that both of Hintikka’s responses fail and present some problems for Cresswell’s. Although Cresswell’s approach can be amended to avoid certain unpalatable consequences, the resulting formal framework collapses to a sentential model of knowledge, which defenders of the ‘possible worlds’ approach are frequently critical of.

Author Biography

Mark Jago, University of Nottingham

Department of Philosophy

References

J.C. Beall, “From full blooded platonism to really full blooded platonism”, Philosophia Mathematica 7 (1999).

R. Brady, “The consistency of the axioms of abstraction and extensionality in a three-valued logic”, Notre Dame Journal of Formal Logic 12 (1971), 447–453.

R. Carnap, Meaning and Necessity, University of Chicago Press, 1947.

Roderick M. Chisholm, “The logic of knowing”, Journal of Philosophy 60(25) (1963), 773–795.

M.J. Cresswell, “Classical intensional logics”, Theoria 36 (1970), 347–72.

M.J. Cresswell, Logics and Languages, Methuen and Co., 1973.

N. da Costa, “On the theory of inconsistent formal systems”, Notre Dame Journal of Formal Logic 15(4) (1974), 497–510.

R. Fagin and J.Y. Halpern, “Belief, awareness and limited reasoning”, Artificial Intelligence 34 (1988), 39–76.

R. Fagin, J.Y. Halpern, Y. Moses, and M.Y. Vardi, Reasoning About Knowledge, MIT Press, 1995.

R. Fagin, J.Y. Halpern, and M.Y. Vardi, “A nonstandard approach to the logical omniscience problem”, in R. Parikh (ed.), Proceedings of the Third Conference on Theoretical Aspects of Reasoning about Knowledge, pages 41–55, Morgan Kaufmann, 1990.

Leon Henkin, “Some remarks on infinitely long formulas”, in Infinitistic Methods, pages 167–183, Pergamon Press, Oxford, 1961.

J. Hintikka, Knowledge and belief: an introduction to the logic of the two notions, Cornell University Press, Ithaca, N.Y., 1962.

J. Hintikka, Logic, Language-Games and Information: Kantian Themes in the Philosophy of Logic, Clarendon Press, Oxford, 1973.

J. Hintikka, “Surface semantics and its motivation”, in H. Leblanc (ed.), Truth, Syntax and Modality. North-Holland, Amsterdam, 1973.

J. Hintikka, “Impossible possible worlds vindicated”, Journal of Philosophical Logic 4 (1975), 475–484.

J. Hintikka, “A second generation epistemic logic and its general significance”, in V.F. Hendricks, S.A. Pedersen, and K.F. Jorgensen (eds.), Knowledge Contributors, number 322 in Synthese Library. Kluwer Academic, Dordrecht, 2003.

Max O. Hocutt, “Is epistemic logic possible?” Notre Dame Journal of Formal Logic 13(4) (1972), 433–453.

Mark Jago, “Imagine the possibilities: Information without overload”, Logique et Analyse 49(196) (2006), 345–370.

D. Kaplan, “Demonstratives”, in J. Almog, J. Perry, and H. Wettstein (eds.), Themes from Kaplan, chapter 17, pages 481–563, Oxford University Press, New York, 1989.

G. Lakemeyer, “Steps towards a first-order logic of explicit and implict belief”, in J. Y. Halpern (ed.), Proceedings of the First Conference on Theoretical Aspects of Reasoning About Knowledge, pages 325–340, Morgan Kaufmann, San Francisco, California, 1986.

G Lakemeyer, “A computationally attractive first-order logic of belief”, in Proceedings of JELIA 90, pages 333–347, Springer, Heidelberg, 1990.

H. J. Levesque, “A logic of implicit and explicit belief”, in National Conference on Artificial Intelligence, pages 198–202, 1984.

A. Meinong, “Über gegenstandstheorie”, in A. Meinong (ed.), Untersuchungen zur Gegenstadstheorie und Psychologie, Barth, Leipzig, 1904.

R. Montague, “Universal grammar”, Theoria 36 (1970), 373–98.

Charles Sanders Peirce, Reasoning and the Logic of Things: The Cambridge Conferences Lectures of 1898, Harvard University Press, Cambridge Mass., 1992.

G. Priest, In Contradiction: A Study of the Transconsistent, Martinus Nijhoff, Dordrecht, 1987.

G. Priest, Towards Non-Being, Clarendon Press, Oxford, 2005.

G. Priest, R. Routley, and J. Norman (eds.), Paraconsistent Logic: Essays on the Inconsistent, Philosophia Verlag, München, 1989.

V. Rantala, “Urn models”, Journal of Philosophical Logic 4 (1975), 455–474.

R. Routley, Exploring Meinong’s Jungle and Beyond, RSSS, Australian National University, Canberra, 1980.

R. Stalnaker, “The problem of logical omniscience I”, Synthese 89 (1991), 425–440.

R. Stalnaker, “On logics of knowledge and belief”, Philosophical Studies 128(1) (2006), 169–199.

W. van der Hoek, B. van Linder, and J.-J. Ch. Meyer, “An integrated modal approach to rational agents”, in M. Wooldridge and A. Rao (eds.), Foundations of Rational Agency, pages 133–168, Kluwer Academic, Dordrecht, 1999.

M.Y. Vardi, “On epistemic logic and logical omniscience”, in J.Y. Halpern (ed.), Theoretical Aspects of Reasoning about Knowledge: proceedings of the First Conference. Morgan Kaufman, 1986.

H. Wansing, “A general possible worlds framework for reasoning about knowledge and belief”, Studia Logica 49(4) (1990).

Timothy Williamson, “Conceptual truth”, The Aristotelian Society supplementary volume 80 (2006).

Ludwig Wittgenstein, Tractatus Logico-Philosophicus, Kegan Paul, 1922.

Edward N. Zalta, Abstract Objects: An Introduction to Axiomatic Metaphysics, D. Reidel, Dordrecht, 1983.

Edward N. Zalta, “A classically-based theory of impossible worlds”, Notre Dame Journal of Formal Logic 38(4) (1997), 640–660.

Logic and Logical Philosophy

Downloads

  • PDF

Published

2007-03-15

How to Cite

1.
JAGO, Mark. Hintikka and Cresswell on logical omniscience. Logic and Logical Philosophy. Online. 15 March 2007. Vol. 15, no. 4, pp. 325-354. [Accessed 9 July 2025]. DOI 10.12775/LLP.2006.019.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 15 No. 4 (2006)

Section

Articles

Stats

Number of views and downloads: 919
Number of citations: 0

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

logical omniscience, epistemic logic, nonclassical logics
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop