Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

Logic of Simpson paradox
  • Home
  • /
  • Logic of Simpson paradox
  1. Home /
  2. Archives /
  3. Vol. 14 No. 2 (2005) /
  4. Articles

Logic of Simpson paradox

Authors

  • Jacek Malinowski Polish Academy of Sciences and Nicolaus Copernicus University, Toruń

DOI:

https://doi.org/10.12775/LLP.2005.013

Keywords

logical entailment, statistical inference, Bayesian inference, Simpson paradox

Abstract

The main aim of this paper is to elucidate, from a logical point of view, the phenomenon of Simpson reversal — the paradox of a statistical reasoning. We define a binary relation of supporting in the following way: a sentence A supports a sentence B if and only if the probability of B is higher when A is true, than when A is false. It appears that a statistical argument occurring in Simpson paradox cannot be formalized by means of a binary relation. We generalize the relation of support introducing the third parameter. Then we argue that it properly mirrors main features of the statistical argument occurring in Simpson paradox.

References

Carnap, R. [1951], Logical foundations of probability, Routledge and Kegan Paul, London.

Howson, C., and P. Urbach [1989], Scientific Reasoning: the Bayesian Approach, Open Court Publishing Co., La Salle, Illinois.

Kuipers, T. [2000], From Instrumentalism to Constructive Realism: On Some Relations Between Confirmation, Empirical Progress, and Truth Approximation, Synthese Library 287, Kluwer Academic Press, Dordrecht.

Makinson, D. [2005], Bridges from Classical to Nonmonotonic Logic, Texts in Computing, Kings College, London.

Malinowski, J. [2005], “Bayesian propositional logic”, to appear.

Pearl, J. [2000], Causality: Models reasoning, and inference, Cambridge University Press, Cambridge.

Popper, K. [1968], The Logic of Scientific Discovery, 3rd. (revised) edition, Hutchinson, London.

Simpson, E.H. [1951], “The Interpretation of Interaction in Contingency Table”, Journal of Royal Statistical Society, Series B, vol. 13, 238–241.

Logic and Logical Philosophy

Downloads

  • PDF

Published

2005-12-23

How to Cite

1.
MALINOWSKI, Jacek. Logic of Simpson paradox. Logic and Logical Philosophy. Online. 23 December 2005. Vol. 14, no. 2, pp. 203-210. [Accessed 1 July 2025]. DOI 10.12775/LLP.2005.013.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 14 No. 2 (2005)

Section

Articles

Stats

Number of views and downloads: 557
Number of citations: 0

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

logical entailment, statistical inference, Bayesian inference, Simpson paradox
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop