Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

First Degree Entailment, Symmetry and Paradox
  • Home
  • /
  • First Degree Entailment, Symmetry and Paradox
  1. Home /
  2. Archives /
  3. Vol. 26 No. 1 (2017): March /
  4. Articles

First Degree Entailment, Symmetry and Paradox

Authors

  • Greg Restall The University of Melbourne http://orcid.org/0000-0001-8257-6764

DOI:

https://doi.org/10.12775/LLP.2016.028

Keywords

first degree entailment, paradox, symmetry, models, theories

Abstract

Here is a puzzle, which I learned from Terence Parsons in his “True Contradictions” [8]. First Degree Entailment (FDE) is a logic which allows for truth value gaps as well as truth value gluts. If you are agnostic between assigning paradoxical sentences gaps and gluts (and there seems to be no very good reason to prefer gaps over gluts or gluts over gaps if you’re happy with FDE), then this looks no different, in effect, from assigning them a gap value? After all, on both views you end up with a theory that doesn’t commit you to the paradoxical sentence or its negation. How is the fde theory any different from the theory with gaps alone?

In this paper, I will present a clear answer to this puzzle –  an answer that explains how being agnostic between gaps and gluts is a genuinely different position than admitting gaps alone, by using the formal notion of a bi-theory, and showing that while such positions might agree on what is to be accepted, they differ on what is to be rejected. 

Author Biography

Greg Restall, The University of Melbourne

Philosophy Department

References

Nuel Belnap, “How a computer should think”, pages 30–55 in G. Ryle (ed.), Contemporary Aspects of Philosophy, Oriel Press, 1976.

Nuel Belnap, “A useful four-valued logic”, pages 8–37, chapter 2, in J.M. Dunn and G. Epstein (eds.), Modern Uses of Multiple-Valued Logic, D. Reidel, 1977. DOI: 10.1007/978-94-010-1161-7_2

Ross T. Brady, “The simple consistency of a set theory based on the logic CSQ”, Notre Dame Journal of Formal Logic, 24, 4 (1983): 431–449. DOI: 10.1305/ndjfl/1093870447

J. Michael Dunn, “Intuitive semantics for first-degree entailments and ‘coupled trees’”, Philosophical Studies, 29, 3 (1976): 149–168. DOI: 10.1007/BF00373152

Paul C. Gilmore, “The consistency of partial set theory without extensionality”, pages 147–153 in Axiomatic Set Theory, volume 13 of Proceedings of Symposia in Pure Mathematics, Providence, Rhode Island, 1974, American Mathematical Society. DOI: 10.1090/pspum/013.2/0360271

Lloyd Humberstone, The Connectives, The MIT Press, 2011.

Saul Kripke, “Outline of a theory of truth”, The Journal of Philosophy, 72, 19 (1975): 690–716. DOI: 10.2307/2024634

Terence Parsons, “True contradictions”, Canadian Journal of Philosophy, 20, 3 (1990): 335–354. DOI: 10.1080/00455091.1990.10716495

Graham Priest, An Introduction to Non-Classical Logic: From if to is, Cambridge University Press, Cambridge, 2008. DOI: 10.1017/CBO9780511801174

Greg Restall, “Multiple conclusions”, pages 189–205 in Petr Hájek, Luis Valdés-Villanueva, and Dag Westerståhl (eds.), Logic, Methodology and Philosophy of Science: Proceedings of the Twelfth International Congress, KCL Publications, 2005. http://consequently.org/writing/multipleconclusions

Greg Restall, “Assertion, denial and non-classical theories”, chapter 6 in K. Tanaka, F. Berto, E. Mares, and F. Paoli (eds.), Paraconsistency: Logic and Applications, volume 26 of Logic, Epistemology and the Unity of Science, Springer 2013. DOI: 10.1007/978-94-007-4438-7_6

Greg Restall, “Pluralism and proofs”, Erkenntnis, 79, 2 (2014): 279–291. DOI: 10.1007/s10670-013-9477-9

Greg Restall, “Assertion, denial, accepting, rejecting, aymmetry and paradox”, pages 310–321 in Colin R. Caret and Ole T. Hjortland (eds.), Foundations of Logical Consequence, Oxford University Press, 2015. DOI: 10.1093/acprof:oso/9780198715696.003.0011

Richard Routley and Valerie Routley, “Semantics of first degree entailment”, Noûs, 6, 4 (1972): 335–359. DOI: 10.2307/2214309

Igor Urbas, “Dual-intuitionistic logic”, Notre Dame Journal of Formal Logic, 37, 3 (1996): 440–451. DOI: 10.1305/ndjfl/1039886520

Peter W. Woodruff, “Paradox, truth and logic. Part I: Paradox and truth”, Journal of Philosophical Logic, 13, 2 (1984): 213–232. DOI: 10.1007/BF00453022

Logic and Logical Philosophy

Downloads

  • PDF

Published

2016-10-19

How to Cite

1.
RESTALL, Greg. First Degree Entailment, Symmetry and Paradox. Logic and Logical Philosophy. Online. 19 October 2016. Vol. 26, no. 1, pp. 3-18. [Accessed 6 July 2025]. DOI 10.12775/LLP.2016.028.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 26 No. 1 (2017): March

Section

Articles

Stats

Number of views and downloads: 917
Number of citations: 2

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

first degree entailment, paradox, symmetry, models, theories
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop