Carbon Nanotubes in Plant Biotechnology: Applications, Challenges and Perspectives
DOI:
https://doi.org/10.12775/KOSMOS.2025.013Keywords
carbon nanotubes, plant biotechnology, genetic transformation, biosensors, agricultural nanotechnologyAbstract
Carbon nanotubes (CNTs) are a class of nanomaterials with unique physicochemical properties that are increasingly being explored in plant biotechnology. This review summarises current knowledge on their effects on seed germination and plant growth, antimicrobial activity, use as gene delivery vectors, and application as biosensors for real-time physiological monitoring. Both beneficial effects, such as growth promotion and stress resistance, and potential toxicological risks are discussed. The paper emphasises the need for further research into the mechanisms of CNT action and the development of safe and effective application strategies. Future prospects include targeted genetic engineering, diagnostics, and innovative crop management for sustainable agriculture.
References
Balasubramanian, K. i Burghard, M., 2006. Biosensors based on carbon nanotubes. Analytical and Bioanalytical Chemistry 385, 452–468. https://doi.org/10.1007/s00216006-0314-8
Bayda, S., Adeel, M., Tuccinardi, T., Cordani, M. i Rizzolio, F., 2019. The History of Nanoscience and Nanotechnology: From Chemical-Physical Applications to Nanomedicine. Molecules 25. https://doi.org/10.3390/molecules25010112
Boonyaves, K., Ang, M.C., Park, M., Cui, J., Khong, D.T., i in., 2023. Near-Infrared Fluorescent Carbon Nanotube Sensors for the Plant Hormone Family Gibberellins. Nano Letters 23, 916–924. https://doi.org/10.1021/acs. nanolett.2c04128
Canas, J.E., Long, M., Nations, S., Vadan, R., Dai, L., i in., 2008. Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Environmental Toxicology and Chemistry 27, 1922–1931. https://doi.org/10.1897/08-117.1
Cassell, A.M., Raymakers, J.A., Kong, J., i Dai, H.J.,1999. Large scale CVD synthesis of single-walled carbon nanotubes. Journal of Physical Chemistry B 103, 6484–6492. https://doi.org/DOI10.1021/jp990957s
Chen, M., Sun, Y., Liang, J., Zeng, G., Li, Z., i in., 2019. Understanding the influence of carbon nanomaterials on microbial communities. Environment International 126, 690–698. https://doi.org/10.1016/j.envint.2019.02.005
Demirer, G.S., Zhang, H., Matos, J.L., Goh, N.S., Cunningham, F.J., i in., 2019. High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. Nature Nanotechnology 14, 456–464. https://doi.org/10.1038/s41565-019-0382-5
Dhingra, P., Sharma, S., Singh, K.H., Kushwaha, H.S., Barupal, J.K., i in., 2022. Seed priming with carbon nanotubes and silicon dioxide nanoparticles influence agronomic traits of Indian mustard (Brassica juncea) in field experiments. Journal of King Saud University – Science 34, 102067. https://doi.org/10.1016/j.jksus.2022.102067
Evtugyn, G., 2022. Bionanotechnology in multiplex assays. Mikrochim Acta 189, 335. https://doi.org/10.1007/s00604-022-05443-x Golestanipour, A., Nikkhah, M., Aalami, A., i Hosseinkhani, S., 2018. Gene Delivery to Tobacco Root Cells with Single-Walled Carbon Nanotubes and Cell-Penetrating Fusogenic Peptides. Molecular Biotechnology 60, 863–878. https://doi.org/10.1007/s12033-018-0120-5
Gonzalez-Garcia, Y., Cadenas-Pliego, G., Alpuche-Solis, A.G., Cabrera, R.I., i JuarezMaldonado, A., 2021. Carbon Nanotubes Decrease the Negative Impact of Alternaria solani in Tomato Crop. Nanomaterials 11. https://doi.org/10.3390/nano11051080
Hasnain, M.S. i Nayak, A.K., 2019. Carbon Nanotubes for Targeted Drug Delivery. Springer Singapore. Iijima, S., 1991. Helical Microtubules of Graphitic Carbon. Nature 354, 56–58. https://doi.org/DOI 10.1038/354056a0
Islam, T., Kalkar, S., Tinker-Kulberg, R., Ignatova, T., i Josephs, E.A., 2024. The „Duckweed Dip”: Aquatic Spirodela polyrhiza Plants Can Efficiently Uptake Dissolved, DNAWrapped Carbon Nanotubes from Their Environment for Transient Gene Expression. ACS Synthetic Biology 13, 687–691. https://doi.org/10.1021/acssynbio.3c00620
Khodakovskaya, M., Dervishi, E., Mahmood, M., Xu, Y., Li, Z., i in., 2009. Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3, 3221–3227. https://doi.org/10.1021/nn900887m
Kwak, S.Y., Lew, T.T.S., Sweeney, C.J., Koman, V.B., Wong, M.H., i in., 2019. Chloroplastselective gene delivery and expression in planta using chitosan-complexed singlewalled carbon nanotube carriers. Nature Nanotechnology 14, 447–455. https://doi.org/10.1038/s41565-019-0375-4
Lara-Romero, J., Campos-Garcia, J., Dasgupta-Schubert, N., Borjas-Garcia, S., Tiwari, D.K., i in., 2017. Biological effects of carbon nanotubes generated in forest wildfire ecosystems rich in resinous trees on native plants. PeerJ 5, e3658. https://doi.org/10.7717/peerj.3658
Luo, Y., Zeng, W., Lei, G., Hou, Y., Ao, C. i in., 2022. The effects of multiwalled carbon nanotubes and Bacillus subtilis treatments on the salt tolerance of maize seedlings. Front Plant Sci 13, 1093529. https://doi.org/10.3389/fpls.2022.1093529
Miralles, P., Johnson, E., Church, T.L., i Harris, A.T., 2012. Multiwalled carbon nanotubes in alfalfa and wheat: toxicology and uptake. Journal of the Royal Society Interface 9, 3514–3527. https://doi.org/10.1098/rsif.2012.0535
Monthioux, M., i Kuznetsov, V.L., 2006. Who should be given the credit for the discovery of carbon nanotubes? Carbon 44, 1621–1623. https://doi.org/10.1016/j.carbon.2006.03.019
Park, S., i Ahn,Y.J., 2016. Multi-walled carbon nanotubes and silver nanoparticles differentially affect seed germination, chlorophyll content, and hydrogen peroxide accumulation in carrot (L.). Biocatalysis and Agricultural Biotechnology 8, 257–262. https://doi.org/10.1016/j.bcab.2016.09.012
Rani, N., Kumari, K., i Hooda, V., 2025. The role of nanoparticles in transforming plant genetic engineering: advancements, challenges and future prospects. Functional & Integrative Genomics 25, 23. https://doi.org/10.1007/s10142-025-01528-x
Safdar, M., Kim, W., Park, S., Gwon, Y., Kim, Y.O., i in., 2022. Engineering plants with carbon nanotubes: a sustainable agriculture approach. Journal of Nanobiotechnology 20. https://doi.org/10.1186/s12951-02201483-w
Samadi, S., Saharkhiz, M.J., Azizi, M., Samiei, L., i Ghorbanpour, M., 2020. Multi-walled carbon nanotubes stimulate growth, redox reactions and biosynthesis of antioxidant metabolites in Thymus daenensis celak. in vitro. Chemosphere 249, 126069. https://doi.org/10.1016/j.chemosphere.2020.126069
Star, A., Gabriel, J.C.P., Bradley, K., i Grüner, G., 2003. Electronic detection of specific protein binding using nanotube FET devices. Nano Letters 3, 459–463. https://doi.org/10.1021/nl0340172
Szollosi, R., Molnar, A., Kondak, S., i Kolbert, Z., 2020. Dual Effect of Nanomaterials on Germination and Seedling Growth: Stimulation vs. Phytotoxicity. Plants 9. https://doi.org/10.3390/plants9121745
Turner, A.P.F., 2015. Biosensors: Fundamentals and applications – Historic book now open access. Biosensors & Bioelectronics 65, A1–A1. https://doi.org/10.1016/j. bios.2014.10.027
Vithanage, M., Seneviratne, M., Ahmad, M., Sarkar, B., i Ok, Y.S., 2017. Contrasting effects of engineered carbon nanotubes on plants: a review. Environmental Geochemistry and Health 39, 1421–1439. https://doi.org/10.1007/s10653-017-9957-y
Vithanage, M., Seneviratne, M., Ahmad, M., Sarkar, B., i Ok, Y.S., 2018. Correction to: Contrasting effects of engineered carbon nanotubes on plants: a review. Environmental Geochemistry and Health 40, 569. https://doi.org/10.1007/s10653-017-0050-3
Wu, H., Nissler, R., Morris, V., Herrmann, N., Hu, P., i in., 2020. Monitoring Plant Health with Near-Infrared Fluorescent H2O2 Nanosensors. Nano Letters 20, 2432–2442. https://doi.org/10.1021/acs.nanolett.9b05159
Zahrebelnei, F., Lima, D., de Lara, L.S., Gryczak, D.W., Carmo, T., i in., 2025. A sensitive electrochemical DNA biosensor for detecting the genome of a plant growth-promoting bacteria. Talanta 286, 127484. https://doi.org/10.1016/j.talanta.2024.127484
Zhang, H., Yue, M.X., Zheng, X.K., Xie, C.S., Zhou, H., i in., 2017. Physiological Effects of Single- and Multi-Walled Carbon Nanotubes on Rice Seedlings. Ieee Transactions on Nanobioscience 16, 563–570. https://doi.org/10.1109/Tnb.2017.2715359
Zhao, G., Zhao, Y., Lou, W., Abdalmegeed, D., Guan, R., i in., 2020. Multi-Walled Carbon Nanotubes Can Promote Brassica napus L. and Arabidopsis thaliana L. Root Hair Development through Nitric Oxide and Ethylene Pathways. International Journal of Molecular Sciences 21. https://doi.org/10.3390/ijms21239109
Downloads
Published
Issue
Section
License
Copyright (c) 2026 KOSMOS

This work is licensed under a Creative Commons Attribution 4.0 International License.
Stats
Number of views and downloads: 18
Number of citations: 0