Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Ecological Questions

Microbiological and genetic characteristics of Bacillus velezensis bacillibactinproducing strains and their effect on the sulfate-reducing bacteria biofilms on the poly(ethylene terephthalate) surface
  • Home
  • /
  • Microbiological and genetic characteristics of Bacillus velezensis bacillibactinproducing strains and their effect on the sulfate-reducing bacteria biofilms on the poly(ethylene terephthalate) surface
  1. Home /
  2. Archives /
  3. Vol. 32 No. 2 (2021) /
  4. Articles

Microbiological and genetic characteristics of Bacillus velezensis bacillibactinproducing strains and their effect on the sulfate-reducing bacteria biofilms on the poly(ethylene terephthalate) surface

Authors

  • Nataliia Tkachuk T.H. Shevchenko National University “Chernihiv Colehium”, 53, Getman Polubotok Str., Chernihiv, 14013
  • Liubov Zelena Danylo Zabolotny Insitute of Microbiology and Virology, NAS of Ukraine 154, Acad. Zabolotny Str., Kyiv, 03143
  • Oleksandr Lukash T.H. Shevchenko National University “Chernihiv Colehium”, 53, Getman Polubotok Str., Chernihiv, 14013
  • Pavlo Mazur T.H. Shevchenko National University “Chernihiv Colehium”, 53, Getman Polubotok Str., Chernihiv, 14013

DOI:

https://doi.org/10.12775/EQ.2021.019

Keywords

Bacillus velezensis, biofilm, Desulfovibrio oryzae, bacillibactin, gene expression, poly(ethylene terephthalate)

Abstract

. It was evaluated the antibiofilm-forming properties of NUChC C1 and NUChC C2b isolates (from the collection of the Department of Biology of the T.H. National University “Chernihiv Colehium”) against the sulfate-reducing bacteria biofilms on the poly(ethylene terephthalate) surface. NUChC C1 and NUChC C2b isolates were isolated by classical microbiology methods on Postgate’s “B” medium and their cultural-morphological, some physiological-biochemical properties and molecular-genetic characteristics were investigated. To identify bacteria the sequencing and analysis of the 16S rRNA gene were carried out. The bacteria were identified as Bacillus velezensis. Based on PCR-ISSR analysis, it was found that the studied bacteria belong to different strains. The 16S rRNA gene sequences were submitted in GenBank as MN508954.1 (NUChC C1), MN749356.1 and MN749357.1 (NUChC C2b). In the genome of B. velezensis the presence and transcriptional activity of the genes for the synthesis of bacillibactin (dhbC, dhbF), fengycin (fenA) and polyglutamic acid (epsK) were studied. Among these only genes belonging to bacillibactin synthesis operon were detected and only they demonstrated activity. The observed mode of dhbC and dhbF genes expression during 144 hours of cultivation differed between two B. velezensis strains: gradually increasing in NUChC C1 and sharply increased after 24 hours with decreasing on 144th hour in NUChC C2b. Antagonistic properties of the studied strains of B. velezensis against sulfate-reducing bacteria Desulfovibrio oryzae NUChC SRB1 and NUChC SRB2 were not observed. Siderophore-producing strains of Bacillus velezensis inhibit the formation of bacterial biofilms on the polymeric material poly(ethylene terephthalate) during its long-term exposure (50 days) in a culture of sulfatereducing bacteria under conditions of sufficient iron supply. Bacillibactin-producing strains prevent the development of bacterial biofilms on the poly(ethylene terephthalate) surface. This is one of the reasons for the prolongation of the process of poly(ethylene terephthalate) biodegradation in natural ecosystems.

References

Abe T., Kobayashi K., Kawamura Sh., Sakaguchi T., Shiiba K. & Kobayashi M., 2019, Dipeptide synthesis by internal adenylation domains of a multidomain enzyme involved in nonribosomal peptide synthesis. The Journal of General and Applied Microbiology 65(1): 1-10. doi: 10.2323/jgam.2018.03.001

Aїmeur N., Houali K., Hamadou L., Benbrahim N. & Kadri A., 2015, Influence of strain Bacillus cereus bacterium on corrosion behaviour of carbon steel in natural sea water. The International Journal of Corrosion Processes and Corrosion Control, 50(8): 579-588. doi:10.1179/1743278215Y.0000000022

Ali S.S. & Wakte P.S., 2016, Biofilm formation and siderophore production by Pseudomonas Aeruginosa isolated from wounds infection. International Journal of New Technology and Research 2(9): 20-23.

Andrushkiv B., Vovk I. & Pohaidak O., 2012, Udoskonalennia ekonomichnoho instrumentariiu poshuku novykh resursiv v umovakh postradianskoho suspilstva [Improving the economic tools for finding new resources in post-Soviet society]. Halytskyi Ekonomichnyi Visnyk 3(36). (in Ukrainian)

Bano A.Sh. & Qazі J.I., 2011, Soil Buried Mild Steel Corrosion by Bacillus cereus-SNB4 and its Inhibition by Bacillus thuringiensis-SN8. Pakistan Journal of Zoology 43(3): 555-562.

Bhinu V.S., 2005, Insight into biofilm-associated microbial life. Journal of Molecular Microbiology and Biotechnology 10: 15-21. doi: 10.1159/000090344

Burak O.M. & Kyrychenko A.Iu., 2020, Stvorennia punktiv pryiomu PET–pliashok dlia udoskonalennia protsesu upravlinnia vidkhodamy v Ukraini [A creative point for receiving PET bottles to improve the waste management process in Ukraine]. Materialy Mizhnarodnoi naukovo-praktychnoi internet-konferentsii “Pidpryiemnytstvo ta biznes-administruvannia”, m. Kharkiv, 2020. (in Ukrainian)

Cai Y., Wang R., An M.-M. & Liang B.-B., 2010, Iron-depletion prevents biofilm formation in Pseudomonas aeruginosa through twitching mobility and quorum sensing. Brazilian Journal of Microbiology 41(1): 37-41. doi: 10.1590/S1517-83822010000100008

Chen Zh., Wang Y., Cheng Y., Wang X., Tong S., Yang H. & Wang Z., 2020, Efficient biodegradation of highly crystallized polyethylene terephthalate through cell surface display of bacterial PETase. Science of The Total Environment 709: 136138. doi: 10.1016/j.scitotenv.2019.136138

De Vos P., Garrity G.M., Jones D., Krieg N.R., Ludwig W., Rainey F.A., Schleifer K.-H. & Whitman W.B. (eds.), 2009, The Firmicutes, 2nd ed., Vol. 3. Bergey’s Manual of Systematic Bacteriology. Springer, New York, NY, USA.

Dikiy I.L., Holupyak I.Y. & Sidorchuk I.I., 2002, Mikrobiologiya. Rukovodstvo k laboratornyim zanyatiyam [Microbiology. A guide to laboratory exercises]. Izdatel'stvo Nacional'nogo farmacevticheskogo universiteta “Zolotye stranicy”, Har'kov, 444 pp. (in Russian)

Du J., Li S., Liu J. & Yu M., 2014, Corrosion behavior of steel Q235 co-influenced by Thiobacillus thiooxidans and Bacillus. Journal of Beijing University of Aeronautics and Astronautics 40(1): 31-38.

Dunlap Ch.A., Kim S.-J., Kwon S.-W. & Rooney A.P., 2016, Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp. plantarum and ‘Bacillus oryzicola’ are later heterotypic synonyms of Bacillus velezensis based on phylogenomics. International Journal of Systematic and Evolutionary Microbiology 66: 1212-1217. doi: 10.1099/ijsem.0.000858

Egorov N.S., 1965, Mikrobyi antagonistyi i biologicheskie metodyi opredeleniya antibioticheskoy aktivnosti [Microbes antagonists and biological methods for determining antibiotic activity]. Vysshaya Shkola, Moskva, 211 pp. (in Russian)

Filella M., 2020, Antimony and PET bottles: Checking facts. Chemosphere 261: 127732. doi: 10.1016/j.chemosphere.2020.127732

Glick R., Gilmour C., Tremblay J., Satanower S., Avidan O, Déziel E., Greenberg E.P., Poole K. & Banin E., 2010, Increase in rhamnolipid synthesis under iron-limiting conditions influences surface motility and biofilm formation in Pseudomonas aeruginosa. Journal of Bacteriology 192(12): 2973-80. doi: 10.1128/JB.01601-09

Grabova A.Yu., Dragovoz I.V., Zelena L.B., Tkachuk D.M. & Avdeeva L.V., 2016, Antifungal activity and gene expression of lipopeptide antibiotics in strains of Bacillus genus. Biopolymers and Cell 32(1): 41-48. doi: 10.7124/bc.00090B

Harrison F. & Buckling A., 2009, Siderophore production and biofilm formation as linked social traits. The ISME Journal 3:632-634. doi: 10.1038/ismej.2009.9

Hertlein G., Müller S., Garcia-Gonzalez E., Poppinga L., Süssmuth R. D. & Genersch E., 2014, Production of the catechol type siderophore bacillibactin by the honey bee pathogen Paenibacillus larvae. PloS One 9(9): e108272. doi:10.1371/journal.pone.0108272

Hsueh Y.-H., Huang K.-Y., Kunene S.Ch. & Lee T.-Y., 2017, Poly-γ-glutamic acid synthesis, gene regulation, phylogenetic relationships, and role in fermentation, International Journal of Molecular Sciences 18: 2644. doi: 10.3390/ijms18122644

Jayaraman A., Hallock P.J., Carson R.M., Lee C.C., Mansfeld F.B. & Wood T.K., 1999a, Inhibiting sulfate-reducing bacteria in biofilms on steel with antimicrobial peptides generated in situ. Applied Microbiology and Biotechnology 52: 267-275. doi: 10.1007/s002530051520

Jayaraman A., Mansfeld F.B. & Wood T.K., 1999b, Inhibiting sulfate-reducing bacteria in biofilms by expressing the antimicrobial peptides indolicidin and bactenecin. Journal of Industrial Microbiology and Biotechnology 22: 167-175. doi: 10.1038/sj.jim.2900627

Khan R., Shen F., Khan K., Liu L.X., Wu H.H., Luo J.Q. & Wan Y.H., 2016, Biofouling control in membrane filtration system by newly isolated novel quorum quenching bacterium, Bacillus methylotrophicus sp. WY. RSC Advances 6: 28895-28903. doi: 10.1039/C6RA01663D

Korenblum E., Sebastián G.V., Paiva M.M., Coutinho C.M.L.M., Magalhães F.C.M., Peyton B.M. & Seldin L., 2008, Action of antimicrobial substances produced by different oil reservoir Bacillus strains against biofilm formation. Applied Microbiology and Biotechnology 79: 97-103. doi: 10.1007/s00253-008-1401-x

Korenblum E., de Araujo L.V., Guimaraes C.R., de Souza L.M., Sassaki G., Abreu F., Nitschke M., Lins U., Freire D.M.G., Barreto-Bergter E. & Seldin L., 2012, Purification and characterization of a surfactin-like molecule produced by Bacillus sp. H2O-1 and its antagonistic effect against sulfate reducing bacteria. BMC Microbiology 12: 252-264. doi: 10.1186/1471-2180-12-252

Leonov V.V., Mironov A.Yu., Ananina I.V., Rubalskaya E.E. & Sentyurova L.G., 2016, Mikrobnye siderofory: struktura, svojstva, funkcii [Siderophores of microbes: structure, properties and functions]. Astrahanskiy Meditsinskiy Zhurnal 11(4): 24-37. (in Russian)

Livak K.J. & Schmittgen T.D., 2001, Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25: 402-408. doi: 10.1006/meth.2001.1262

Lukash O.V., 2015, Stykhiini smittiezvalyshcha v okolytsiakh silskykh naselenykh punktiv Chernihivshchyni: vplyv na pryrodni ekosystemy ta sotsialnyi aspekt problem [Spontaneous landfills in the vicinity of rural settlements in Chernihiv region: impact on natural ecosystems and the social aspect of the problem], Formuvannia stratehii povodzhennia z vidkhodamy v umovakh detsentralizatsii vlady: problemy ta perspektyvy realizatsii na rivni mistsevykh hromad: zbirka materialiv natsionalnoho forumu “Povodzhennia z vidkhodamy v Ukraini: zakonodavstvo, ekonomika, tekhnolohii” (10–11 lystopada 2015 r., m. Kyiv). Tsentr ekolohichnoi osvity ta informatsii, Kyiv, p. 66–68. (in Ukrainian)

Mongkolthanaruk W., 2012, Classification of Bacillus Beneficial Substances Related to Plants, Humans and Animals. Journal of Microbiology and Biotechnology 22(12): 1597-1604. doi: 10.4014/jmb.1204.04013

NCBI, 2019, Taxonomy [online]. Website https://www.ncbi.nlm.nih.gov/Taxonomy/ [accessed 15 November 2019]

Ornek D., Jayaraman A., Syrett B.C., Hsu C.H., Mansfeld F.B. & Wood T.K., 2002, Pitting corrosion inhibition of aluminum 2024 by Bacillus biofilms secreting polyaspartate or g-polyglutamate. Applied Microbiology and Biotechnology 58: 651–657. doi: 10.1007/s00253-002-0942-7

Pelchovich G., Omer-Bendori S. & Gophna U., 2013, Menaquinone and iron are essential for complex colony development in Bacillus subtilis. PLoS One 8: e79488. doi: 10.1371/journal.pone.0079488

Qin Y., He Y., She Q., Larese-Casanova Ph., Li P., Li P. & Chai Y., 2019, Heterogeneity in respiratory electron transfer and adaptive iron utilization in a bacterial biofilm. Nature Communications 10: 3702. doi: 10.1038/s41467-019-11681-0

Rabbee M.F., Ali Md.S., Choi J., Hwang B.S., Jeong S.Ch. & Baek K.-h., 2019, Bacillus velezensis: A Valuable Member of Bioactive Molecules within Plant Microbiomes. Molecules 24: 1046. doi:10.3390/molecules24061046

Ramlucken U., Roets Y., Ramchuran S.O., Moonsamy G., van Rensburg Ch.J., Thantsh M.S. & Lalloo R., 2020, Isolation, selection and evaluation of Bacillus spp. as potential multi-mode probiotics for poultry. The Journal of General and Applied Microbiology, Article ID 2019.11.002. doi: 10.2323/jgam.2019.11.002

Ribeiro M. & Simões M., 2019, Siderophores: a novel approach to fight antimicrobial resistance, [in:] D. Arora, Ch. Sharma, S. Jaglan, E. Lichtfouse (eds.), Pharmaceutical from microbes: impact on drug discovery. Springer International Publishing, p. 99-120.

Rizzi A., Roy S., Bellenger J.-Ph. & Beauregard P.B., 2019, Iron Homeostasis in Bacillus subtilis Requires Siderophore Production and Biofilm Formation. Applied and Environmental Microbiology 85(3): e02439-18. doi: 10.1128/AEM.02439-18

Rogers K.L., Carreres-Calabuig J.A., Gorokhova E. & Posth N.R., 2020, Micro-by-micro inretactions: How microorganisms influence the fate of marine microplastics. Limnology and Oceanography Letters 5: 18-36. doi:10.1002/lol2.10136

Saha M., Sarkar S., Sarkar B., Sharma B.K., Bhattacharjee S. & Tribedi P., 2016, Microbial siderophores and their potential applications: a review. Environmental Science and Pollution Research International 23(5): 3984-99. doi: 10.1007/s11356-015-4294-0.

Saveliev Yu.V., Yanovych I.V., Akhranovych O.R. et al., 2011, Stvorennia ta zastosuvannia dehraduiuchykh za umov navkolyshnoho seredovyshcha poliuretaniv na osnovi vuhlevodiv [Creation and application of polyurethanes, degrading under environmental conditions, based on carbohydrates], Polimernyi Zhurnal, 33(3): 205-217. (in Ukrainian)

Saxena A.K., Kumar M., Chakdar H., Anuroopa N. & Bagyaraj D.J., 2020, Bacillus species in soil as a natural resource for plant health and nutrition. Journal of Applied Microbiology 128(6): 1583-1594. doi: 10.1111/jam.14506

Shulga N.V., Tkachuk N.V. & Zelena L.B., 2020, Biodegradatsiya polietilentereftalatu [Biodegradation of polyethylene terephthalate], Krok u nauku: doslidzhennya u galuzi prirodnicho-matematichnih distsiplin ta metodik yih navchannya: Zbirnik tez dopovidey Vseukrayinskoyi naukovo-praktichnoyi konferentsiyi studentiv, aspirantiv i molodih uchenih (20 listopada 2020 r., m. Chernihiv). NUChK imeni T.H. Shevchenka, Chernihiv, p. 74-75. (in Ukrainian)

Stepanović S., Vuković D., Dakić I., Savić B. & Švabić-Vlahović M., 2000, A modified microtiter-plate test for quantification of staphylococcal biofilm formation. Journal of Microbiological Methods 40: 175-179. doi:10.1016/s0167-7012(00)00122-6

Sujatha N. & Ammani K., 2013, Siderophore production by the isolates of fluorescent Pseudomonas. International Journal of Current Research and Review 5(20): 1-7.

Tamura K., Stecher G., Peterson D., Filipski A. & Kumar S., 2013, MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution 30: 2725-2729. doi: 10.1093/molbev/mst197.

Tkachuk N., Zelena L., Mazur P. & Lukash O., 2020, Genotypic, physiological and biochemical features of Desulfovibrio strains in a sulfidogenic microbial community isolated from the soil of ferrosphere. Ecological Questions 31(2): 79-88. doi:10.12775/EQ.2020.016

Tkachuk N.V., Zelena L.B., Parminska V.S., Yanchenko V.O. & Demchenko A.M., 2017, Identyfikatsiia heterotrofnykh bakterii ferosfery gruntu ta yikh chutlyvist do pestytsydu linuron [Identification of heterotrophic bacteria isolated from soil ferrosphere and their sensitivity to the pesticide linuron]. Mikrobiolohichnyi Zhurnal 79(4): 75-87. doi: 10.15407/microbiolj79.04.075 (in Ukrainian)

Vague M., Chan G., Roberts C., Swartz N.A., & Mellies J.L., 2019, Pseudomonas isolates degrade and form biofilms on polyethylene terephthalate (PET) plastic. bioRxiv, 647321. doi: 10.1101/647321.

Wadood H.Z., Rajasekar A.,·Ting Y.-P. & Sabari A.N., 2015, Role of Bacillus subtilis and Pseudomonas aeruginosa on Corrosion Behaviour of Stainless Steel. Arabian Journal for Science and Engineering 40: 1825–1836. doi: 10.1007/s13369-015-1590-4

Wang L., Yu L. & Lin C., 2019, Extraction of Protease Produced by Sea Mud Bacteria and Evaluation of Antifouling Performance. Journal of Ocean University of China (Oceanic and Coastal Sea Research) 18: 1139-1146. doi: 10.1007/s11802-019-3843-4

Yoo Y., Seo D.-H., Lee H., Cho E.-S., Song N.-E., Nam T.G., Nam Y.-D. & Seo M.-J., 2019, Inhibitory effect of Bacillus velezensis on biofilm formation by Streptococcus mutans. Journal of Biotechnology 298: 57-63. doi: 10.1016/j.jbiotec.2019.04.009

Yoshida S., Hiraga K., Takehana T., Taniguchi I., Yamaji H., Maeda Y., Toyohara K., Miyamoto K., Kimura Y. & Oda K., 2016, A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351(6278): 1196-1199. doi: 10.1126/science.aad6359

Zelena L., Gretsky I. & Gromozova E., 2014, Influence of ultrahigh frequency irradiation on Photobacterium phosphoreum luxb gene expression. Central European Journal of Biology 9: 1004-1010. doi: 10.2478/s11535-014-0347-5

Zvyagintsev G.D., Babieva I.P. & Zenova G.M., 2005, Biologiya pochv [Biology of soils]. Izdatel'stvo Moskovskogo universiteta, Moskva, 445 pp. (in Russian)

Downloads

  • PDF

Published

2021-04-27

How to Cite

1.
TKACHUK, Nataliia, ZELENA, Liubov, LUKASH, Oleksandr and MAZUR, Pavlo. Microbiological and genetic characteristics of Bacillus velezensis bacillibactinproducing strains and their effect on the sulfate-reducing bacteria biofilms on the poly(ethylene terephthalate) surface. Ecological Questions. Online. 27 April 2021. Vol. 32, no. 2, pp. 119-129. [Accessed 10 November 2025]. DOI 10.12775/EQ.2021.019.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 32 No. 2 (2021)

Section

Articles

Stats

Number of views and downloads: 1277
Number of citations: 1

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

Bacillus velezensis, biofilm, Desulfovibrio oryzae, bacillibactin, gene expression, poly(ethylene terephthalate)
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop