Impact of antibiotics as anthropogenic stressor for influencing bacterial evolutionary process – A review
DOI:
https://doi.org/10.12775/EQ.2021.013Keywords
antibiotics, bacteria, evolution, population, communityAbstract
A large number of human induced stressors are affecting natural evolutionary process through altering ecosystems and biodiversity. Antibiotics are one of the most commonly excreted pollutants released in environment since last eight decades. Antibiotics can alter genetic orientation of bacterial population and can exert selection pressure for emerging new taxon. In environments like soil and water, antibiotics directly or indirectly may affect many aspects of natural systems like biogeochemical cycles, nitrifications and decomposition process. All these may bring new selection pressure for bacteria not only in community or population level but also in species level.References
Abeles S.R., Jones M.B., Santiago-Rodriguez T.M., Ly M., Klitgord N., Yooseph S., Nelson K.E. & Pride D.T., 2016, Microbial diversity in individuals and their household contacts following typical antibiotic courses. Microbiome 4(1): 39.
Allen H.K., Donato J., Wang H.H., Cloud-Hansen K.A., Davies J. & Handelsman J., 2010, Call of the wild: antibiotic resistance genes in natural environments. Nat. Rev. Microbiol. 8: 251–259.
Andersson D.I. & Hughes D., 2014,Microbiological effects of sublethal levels of antibiotics. Nat. Rev. Microbiol. 12(7): 465–478.
Baquero F. & Blazquez J., 1997, Evolution of antibiotic resistance. Trends Ecol. Evol. 12: 482–87.
Blount K.F. & Breaker R.R., 2006, Riboswitches as antibacterial drug targets. Nat. Biotechnol. 24: 1558–1564.
Bouki C., Venieri D. & Diamadopoulos E., 2013, Detection and fate of antibiotic resistant bacteria in wastewater treatment plants: a review. Ecotoxicol. Environ. Saf. 91: 1–9.
Caporaso J.G., Lauber C.L., Walters W.A., Berg-Lyons D., Lozupone C.A., Turnbaugh P.J., Fierer N. & Knight R., 2011, Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. USA 108: 4516–4522.
Chen Y.S., Zhang H.B., Luo Y.M. & Song J., 2012, Occurrence and assessment of veterinary antibiotics in swine manures: a case study in East China. Chinese Sci. Bull. 57: 606–614.
Cleary D.W., Bishop A. H., Zhang L., Topp E., Wellington E.M.H. & Gaze W.H., 2016, Long-term antibiotic exposure in soil is associated with changes in microbial community structure and prevalence of class 1 integrons. FEMS Microbiol. Ecol. 92(10): fiw159. Doi: 10.1093/femsec/fiw159
Cox G. & Wright G.D., 2013, Intrinsic antibiotic resistance: mechanisms, origins, challenges and solutions. Int. J. Med. Microbiol. 303(6–7): 287–92.
Cui H., Wang S.-P., Fu J., Zhou Z.-Q., Zhang N. & Guo L., 2014, Influence of ciprofloxacin on microbial community structure and function in soils. Biol. Fertil. Soils 50: 939–947.
Cycoń M., Mrozik A. & Piotrowska-Seget Z., 2019, Antibiotics in the Soil Environment—Degradation and Their Impact on Microbial Activity and Diversity. Front.Microbiol. 10: 338. Doi: 10.3389/fmicb.2019.00338
Daghrir R. & Drogui P., 2013, Tetracycline antibiotics in the environment: a review. Environ. Chem. Lett. 11: 209–227.
Davies J., Spiegelman G.B. & Yim G., 2006, The world of subinhibitory antibiotic concentrations. Curr. Opin. Microbiol. 9: 445–453.
Delcour A.H., 2009, Outer membrane permeability and antibiotic resistance. Biochim. Biophys. Acta Proteins Proteom. 1794: 808–816.
Demoling L.A. & Bååth E., 2008, No long-term persistence of bacterial pollution-induced community tolerance in tylosin-polluted soil. Environ. Sci. Technol. 42: 6917–6921
Ding C. & He J., 2010, Effect of antibiotics in the environment on microbial populations. Appl. Microbiol. Biotechnol. 87: 925–941.
Dlugosch K.M. & Parker I.M., 2008, Invading populations of an ornamental shrub show rapid life history evolution despite genetic bottlenecks. Ecol. Lett. 11: 701–9.
Drury B., Scott J., Rosi-Marshall E.J. & Kelly J.J., 2013,Triclosan exposure increases triclosan resistance and influences taxonomic composition of benthic bacterial communities. Environ. Sci. Technol. 47: 8923–8930
Duan M., Li H., Gu J., Tuo X., SunW., Qian X. & Wang X., 2017, Effects of biochar on reducing the abundance of oxytetracycline, antibiotic resistance genes, and human pathogenic bacteria in soil and lettuce. Environ Pollut. 224: 787–795.
Eckert E.M., Quero G.M., Di Cesare A., Manfredini G., Mapelli F., Borin S., Fontaneto D., Luna G.M. & Corno G., 2019, Antibiotic disturbance affects aquatic microbial community composition and food web interactions but not community resilience. Mol. Ecol. 28: 1170–1182.
Ellis E.C., 2011, Anthropogenic transformation of the terrestrial biosphere. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 369: 1010–1035.
Forslund K., Sunagawa S., Kultima J.R., Mende D.R., Arumugam M., Typas A. & Bork P., 2013, Country-specific antibiotic use practices impact the human gut resistome. Genome Res. 23(7): 1163–1169.
Foster P., 2007, Stress-induced mutagenesis in bacteria. Crit. Rev. Biochem. Mol. Biol. 42: 373–397.
Fountoulakis M.S., Drillia P., Stamatelatou K. & Lyberatos G., 2004, Toxic effect of pharmaceuticals on methanogenesis. Water Sci. Technol. 50: 335–340.
Gibbons S.M. & Gilbert J.A., 2015, Microbial diversity-exploration of natural ecosystems and microbiomes. Curr.Opin. Genet. Dev. 35:66–72.
Girgis H.S., Hottes A.K. & Tavazoie S., 2009, Genetic architecture of intrinsic antibiotic susceptibility. PLoS One4(5): e5629.
Göbel A., Thomsen A., McArdell C.S., Alder A.C, Giger W., TheissN., Löffler D. & Ternes T.A., 2005, Extraction and determination of sulfonamides, macrolides, and trimethoprim in sewage sludge. J. Chromatogr. A 1085: 179–189.
Goh E.-B., Yim G.,TsuiW., McClure J., Surette M.G. & Davies J., 2002, Transcriptional modulation of bacterial gene expression by subinhibitory concentrations of antibiotics. Proc. Natl. Acad. Sci. USA 99: 17025–17030.
Grenni P., Ancona V. & Barra Caracciolo A., 2018. Ecological effects of antibiotics on natural ecosystems: a review. Microchem. J. 136: 25–39.
Jernberg C., Löfmark S., Edlund C. & Jansson J.K., 2010, Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology 156(1): 3216–23.
Kelsic E.D., Zhao J., Vetsigian K. & Kishony R., 2015, Counteraction of antibiotic production and degradation stabilizes microbial communities. Nature 521(7553): 516–519.
Klaver A.L. & Matthews R.A., 1994, Effects of oxytetracycline on nitrification in a model aquatic system. Aquaculture 123: 237–247.
Koike S., Krapac I.G., Oliver H.D., Yannarell A.C., Chee-Sanford J.C., Aminov R.I. & Mackie R.I., 2007, Monitoring and source tracking of tetracycline resistance genes in lagoons and groundwater adjacent to swine production facilities over a 3-year period. Appl. Environ. Microbiol. 73: 4813–4823.
Kotzerke A., Sharma S., Schauss K., Heuer H., Thiele-Bruhn S., Smalla K., Wilke B.M. & Schloter M., 2008, Alterations in soil microbial activity and N-transformation processes due to sulfadiazine loadsin pig-manure. Environ.Pollut. 153: 315–322.
Kumar K., Gupta C.S., Chander Y. & Singh A.K., 2005, Antibiotic use in agriculture and its impact on the terrestrial environment. Adv. Agron. 87: 1–54.
Kümmerer K., 2009, Antibiotics in the aquatic environment—a review—part I. Chemosphere 75: 417–434.
Li W., Shi Y., Gao L., Liu J. & Cai Y., 2013, Occurrence, distribution and potential affecting factors of antibiotics in sewage sludge of wastewater treatment plants in China. Sci. Tot. Environ. 445–446: 306–313.
Lillenberg M., Yurchenko S., Kipper K., Herodes K., Pihl V., Lõhmus R., Ivask M., Kuu A., Kutti S., Litvin S.V. & Nei L., 2010, Presence of fluoroquinolones and sulfonamides in urban sewage sludge and their degradation as a result of composting. Int. J. Environ. Sci. Technol. 7: 307–312.
Looft T. & Allen H.K., 2012, Collateral effects of antibiotics on mammalian gut microbiomes. Gut Microbes 3(5): 463–467.
Lozupone C.A. & Knight R., 2007, Global patterns in bacterial diversity. Proc. Natl. Acad. Sci. USA 104: 11436–11440.
Maiques E., Úbeda C., Campoy S., Salvador N., Lasa Í., Novick R.P., Barbé J. & Penadés J.R., 2006, Beta-lactam antibiotics induce the SOS response and horizontal transfer of virulence factors in Staphylococcus aureus. J. Bacteriol. 188: 2726–2729.
Manzetti S. & Ghisi R., 2014, The environmental release and fate of antibiotics. Mar. Pollut. Bull. 79: 7–15.
Martinez J.L., 2009, Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ. Pollut. 157: 2893–2902.
Martínez J.L., 2017, Effect of antibiotics on bacterial populations: A multi-hierarchical selection process. F1000Research 6(F1000 Faculty Rev.): 51.
Martínez-Carballo E., González-Barreiro C., Scharf S. & Gans O., 2007, Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria. Environ. Pollut. 148: 570–579.
Massé D.I., Saady N.M.C. & Gilbert Y., 2014, Potential of biological processes to eliminate antibiotics in livestock manure: an overview. Animals 4: 146–163.
Meek R.W., Vyas H. & Piddock L.J.V., 2015, Nonmedical Uses of Antibiotics: Time to Restrict Their Use? PLoS Biol. 13(10): e1002266.
Müller A.K., Westergaard K., Christensen S. & Sørensen S.J., 2002, The diversity and function of soil microbial communities exposed to different disturbances. Microb. Ecol. 44: 49–58.
Murray B.E., 1997, Antibiotic resistance. Adv. Intern. Med. 42: 339–367.
Naslund J., Hedman J.E. & Agestrand C., 2008, Effects of the antibiotic ciprofloxacin on the bacterial community structure and degradation of pyrene in marine sediment. Aquat. Toxicol. 90: 223–227.
Olivares J., Bernardini A., Garcia-Leon G., Corona F., Sanchez M.B. & Martinez J.L., 2013, The intrinsic resistome of bacterial pathogens. Front.Microbiol. 30(4): 103. Doi: 10.3389/fmicb.2013.00103
Pallecchi L., Bartoloni A., Paradisi F. & Rossolini G.M., 2008, Antibiotic resistance in the absence of antimicrobial use: mechanisms and implications. Expert Rev. Anti-Infect. Ther. 6: 725–732.
Palumbi S.R., 2001, Humans as the world’s greatest evolutionary force. Science 293: 1786–1790.
Pan X., Qiang Z., Ben W. & Chen M., 2011, Residual veterinary antibiotics in swine manure Chemosphere 84: 695–700.
Pan M. & Chu L.M., 2017, Leaching behavior of veterinary antibiotics in animal manure-applied soils. Sci. Total Environ. 579: 466–473.
Parmesan C., 2006, Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37: 637– 669.
Pauwels B. & Verstraete W., 2006, The treatment of hospital wastewater: an appraisal. J. Water Health 4: 405–416.
Raymond F., Deraspe M., Boissinot M., Bergeron M.G. & Corbeil J., 2016, Partial recovery of microbiomes after antibiotic treatment. Gut Microbes 7(5): 428–434.
Reichel R., Rosendahl I., Peeters E.T.H.M., Focks A., Groeneweg J., Bierl R., Schlichting A., Amelung W. & Thiele-Bruhn S., 2013, Effects of slurry from sulfadiazine- (SDZ) and difloxacin- (DIF) medicated pigs on the structural diversity of microorganisms in bulk and rhizosphere soil. Soil Biol. Biochem. 62: 82–91.
Rémy B., Mion S., Plener L., Elias M., Chabrière E. & Daudé D., 2018, Interference in bacterial quorum sensing: A biopharmaceutical perspective. Front. Pharmacol. 9: 203.
Robinson C.J. & Young V.B., 2010, Antibiotic administration alters the community structure of the gastrointestinal microbiota. Gut Microbes 1(4): 279–84.
Roose-Amsaleg C. & Laverman A.M., 2016, Do antibiotics have environmental side-effects? Impact of synthetic antibiotics on biogeochemical processes. Environ. Sci. Pollut. Res. 23: 4000–4012.
Sanchez-Romero M.A. & Casadesus J., 2013, Contribution of phenotypic heterogeneity to adaptive antibiotic resistance. Proc. Natl. Acad. Sci. USA 111: 355–360.
Sanchez-Romero I. & Dunlop M.J., 2018, Heterogeneity in efflux pump expression predisposes antibiotic-resistant cells to mutation. Science 362: 686–690.
Sarmah A.K., Meyer M.T. & Boxall A.B.A., 2006, A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65: 725–759.
Schauss K., Focks A., Leininger S., Kotzerke A., Heuer H., Thiele-Bruhn S., Sharma S., Wilke B.M., Matthies M., Smalla K., Munch J.C., Amelung W., Kaupenjohann M., Schloter M. & Schleper C., 2009, Dynamics and functional relevance of ammonia-oxidizing archaea in two agricultural soils. Environ. Microbiol. 11: 446–456.
Slager J., Kjos M., Attaiech L. & Veening J.W., 2014, Antibiotic-induced replication stress triggers bacterial competence by increasing gene dosage near the origin. Cell 157: 395–406.
Sultan I., Rahman S., Jan A.T., Siddiqui M.T., Mondal A.H. & Haq Q.M.R., 2018, Antibiotics, Resistome and Resistance Mechanisms: A Bacterial Perspective. Front. Microbiol. 9: 2066. Doi: 10.3389/fmicb.2018.02066
Święciło A. & Zych-Wężyk I., 2013, Bacterial stress response as an adaptation to life in a soil environment. Pol. J. Environ. Stud. 22: 1577–1587.
Tabashnik B.E., 1994, Evolution of resistance to Bacillus thuringiensis. Annu. Rev. Entomol. 39: 47–79.
Thiele-Bruhn S., 2003, Pharmaceutical antibiotic compounds in soils - a review. J. Plant Nutr. Soil Sci. 166: 145–167.
Thiele-Bruhn S. & Beck I.C., 2005, Effects of sulfonamide and tetracycline antibiotics on soil microbial activity and microbial biomass. Chemosphere 59: 457–465.
Tomlinso T.G., Boon A.G. & Trotman C.A.N., 1966, Inhibition of nitrification in activated sludge process of sewage disposal. J. Appl. Bacteriol. 29: 266–291.
Torsvik V., Øvreås L. & Øvreas L., 2002, Microbial Diversity and Function in Soil: From Genes to Ecosystems. Curr. Opin. Microbiol. 5: 240–245.
Underwood J.C., Harvey R.W., Metge D.W., Repert D.A., Baumgartner L.K., Smith R.L., Roane T.M. & Barber L., 2011, Effects of the antimicrobial sulfamethoxazole on groundwater bacterial enrichment. Environ. Sci. Technol. 45: 3096–3101.
Van Boeckel T.P., Gandra S., Ashok A., Caudron Q., Grenfell B.T., Levin S.A. & Laxminarayan R., 2014, Global Antibiotic Consumption 2000 to 2010: An Analysis of National Pharmaceutical Sales Data. The Lancet Infectious Diseases 3099(14): 1–9.
Van Boeckel T.P., Brower C., Gilbert M., Grenfell B.T., Levin S., Robinson T.P., Teillant A. & Laxminarayan R., 2015, Global Trends in Antimicrobial Use in Food Animals. Proc. Natl Acad. of Sci. USA 112(18): 5649–5654.
Van Bruggen A.H.C., Goss E.M., Havelaar A., Van Diepeningen A.D., Finckh M.R. & Morris J.G., 2019, One Health—Cycling of diverse microbial communities as a connecting force for soil, plant, animal, human and ecosystem health. Sci. Total Environ. 664: 927–937.
Van Doorslaer X., Dewulf J., Van Langenhove H. & Demeestere K., 2014, Fluoroquinolone antibiotics: an emerging class of environmental micropollutants. Sci. Total Environ. 500–501: 250–269.
Walters E., McClellan K. & Halden R.U., 2010, Occurrence and loss over three years of 72 pharmaceuticals and personal care products from biosolids-soil mixtures in outdoor mesocosms. Water Res. 44: 6011–6020.
Westergaard K., Müller A.K., Christensen S., Bloem J. & Sørensen S.J., 2001, Effects of tylosin as a disturbance on the soil microbial community. Soil Biol. Biochem. 33: 2061–2071.
Worm B. & Paine R.T., 2016, Humans as a Hyper keystone Species. Trends Ecol. Evol. 31: 600–607.
Wu X.-L., Xiang L., Yan Q.-Y., Jiang Y.-N., Li Y.-W., Huang X.-P., Li H., Cai Q.-Y. & Mo C.H., 2014, Distribution and risk assessment of quinolone antibiotics in the soils from organic vegetable farms of a subtropical city, Southern China. Sci. Total Environ. 487: 399–406.
Zhang Y., Tian Z. & Liu M., 2015, High Concentrations of the Antibiotic Spiramycin in Wastewater Lead to High Abundance of Ammonia-Oxidizing Archaea in Nitrifying Populations. Environ. Sci. Technol. 49(15): 9124–32.
Zhao L., Dong Y.H. & Wang H., 2010, Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China. Sci. Total Environ. 408: 1069–1075.
Zielezny Y., Groeneweg J., Vereecken H. & Tappe W., 2006, Impact of sulfadiazine and chlorotetracycline on soil bacterial community structure and respiratory activity. Soil Biol. Biochem. 38: 2372–2380.
Downloads
Published
How to Cite
Issue
Section
Stats
Number of views and downloads: 882
Number of citations: 0