Influence of soil moisture regime on the species diversity and biomass of the herb layer of pine forests in the Ural Mountains
DOI:
https://doi.org/10.12775/EQ.2021.011Keywords
soil moisture regime, forest type, old-growth coniferous forests, herb layer, species diversity, biomass, Ural MountainsAbstract
Adaptation of plant communities is an important factor for maintaining their functioning and stability in changing conditions. The aim of our research is study of the effect of soil moisture regime on the species richness and biomass of the herb layer for old-growth coniferous forests in the Ural Mountains (Russia). The research has been carried out between 57° 00'N; 60° 15''E and 57° 05'N; 60° 25'E. The studied area is part of the Zauralsky hilly piedmont province, the Southern boreal forest region. Sample plots (0.25 hectares) were laid in pine forests growing in habitats with different moisture regimes: insufficient, optimal (stable), and excessive. The research was conducted in 2010.To determine the herb layer productivity, 10-20 subplots 1x1 m in size were laid on each sample plot. Data analysis is based on the One-way ANOVA and species abundance distributions. It has been established that species richness in extreme (insufficient and excessive soil moisture regime (Cowberry pine forest and Pine forest with shrubs and sphagnum) and optimal (stable) soil moisture regime (Multi-herb pine forest) were found to vary significantly, with soil moisture regime being a statistically significant factor. By contrast, herb layer biomass is maintained fairly stable regardless of the soil moisture regimes. ANOVA showed no significant differences between pine forests growing under different soil moisture regimes. It has been found that biomass is maintained by increasing of the dominant species contribution to the overall biomass and increasing of the approximation function graph slope. At the same time, the parameter β of exponential and power approximating functions is increased and can be considered as an indicator of influencing on forest ecosystems and a measure of their adaptation to insufficient and excessive soil moisture. Thus, species abundance distributions can be used as method to measure the effects of factors that determine forest ecosystem composition and functioning.References
Aganina U.E. & Tarkhanov S.N., 2016, Variability of biochemical indicators and adaptation of f. (var.) sulfuranthera Kozubow forms of the pine (Pinus sylvestris L.) in the conditions of excess humidification. Izvestia of the Samara Scientific Center of the Russian Academy of Sciences 18(2-1): 10-14.
Alamgir M., Pert P.L. & Turton S.M., 2014, A review of ecosystem services research in Australia reveals a gap in integrating climate change and impacts on ecosystem services. International Journal of Biodiversity Science, Ecosystem Services & Management 10: 112-127. doi:10.1080/21513732.2014.919961
Astamirova M.A.-M., Umarov M.U. & Taysumov M.A., 2016, Anatomical and physiological adaptations of cryophilic plants of central and eastern Main Caucasus Ridge. The Bulletin of KrasGAU 11: 114-122.
Bouchard M., Aquilué N., Périé C. & Lambert M-C., 2019, Tree species persistence under warming conditions: A key driver of forest response to climate change. Forest Ecology and Management 442: 96-104. doi: 10.1016/j.foreco.2019.03.040
Bucher S.F., Feiler R., Buchner O., Neuner G., Rosbakh S., Leiterer M. & Römermann C., 2019, Temporal and spatial trade-offs between resistance and performance traits in herbaceous plant species. Environmental and Experimental Botany 157: 187-196. doi: 10.1016/j.envexpbot.2018.10.015
Calder R.S.D., Shi C., Mason S.A., Olander L.P. & Borsuk M.E., 2019, Forecasting ecosystem services to guide coastal wetland rehabilitation decisions. Ecosystem Services 39: 101007. doi:10.1016/j.ecoser.2019.101007
Cheng J., Mi, X., Ma K. & Zhang J., 2011, Responses of species–abundance distribution to varying sampling scales in a subtropical broad-leaved forest. Biodiversity Science 19: 168-177. doi:10.3724/sp.j.1003.2011.10107
Courbier S. & Pierik R., 2019, Canopy Light Quality Modulates Stress Responses in Plants. iScience 22: 441-452. doi:10.1016/j.isci.2019.11.035
Ferreira W.N., Lacerda C.F., Costa R.C. & Medeiros Filho S., 2015, Effect of water stress on seedling growth in two species with different abundances: the importance of Stress Resistance Syndrome in seasonally dry tropical forest. Acta Bot. Bras. 29(3): 375-382. doi: 10.1590/0102-33062014abb0045
Fisher B., Turner R.K. & Morling P., 2009, Defining and classifying ecosystem services for decision making. Ecol. Econ. 68: 643-653. doi:10.1016/j.ecolecon.2008.09.014
Fomin V.V., Zalesov S.V. & Magasumova A.G., 2015, Methods of tree stands density assessment of agricultural land reforestation with the use of satellite images with high spatial resolution. Agrarian Bulletin of the Urals 1: 25-29.
Fomin V.V., Zalesov S.V., Popov A.S. & Mikhailovich A.P., 2017, Historical avenues of research in Russian forest typology: ecological, phytocoenotic, genetic, and dynamic classifications. Canadian Journal of Forest Research 47: 849-860. doi: 10.1139/cjfr-2017-0011
Franklin K.A. & Wigge P.A., 2014, Temperature and Plant Development. John Wiley & Sons Inc., Oxford, UK, 250 pp. doi:10.1002/9781118308240
Galicia L. & Zarco-Arista A.E., 2014, Multiple ecosystem services, possible trade-offs and synergies in a temperate forest ecosystem in Mexico: a revie. International Journal of Biodiversity Science, Ecosystem Services & Management 10: 275-288. doi:10.1080/21513732.2014.973907
Guerin G.R. & Lowe A.J., 2013, Multi-species distribution modelling highlights the Adelaide Geosyncline, South Australia, as an important continental-scale arid-zone refugium. Austral Ecology 38: 427-435.
Guerin G.R., Sparrow B., Tokmakoff A., Smyth A., Leitch E., Baruch Z. & Lowe A.J., 2017, Opportunities for Integrated Ecological Analysis across Inland Australia with Standardised Data from Ausplots Rangelands. PLoS ONE 12(1): e0170137. doi: 10.1371/journal.pone.0170137
Habarova E.P., Feklistov P.A. & Kosheleva A.E., 2015, Contents of mineral elements in the dying off needles of scotch pine on drained areas. Forestry Bulletin 19(2): 15-20.
Halofsky J.E., Andrews-Key S.A., Edwards J.E., Johnston M.H., Nelson H.W., Peterson D.L., Schmitt K.M., Swanston C.W. & Williamson T.B., 2018, Adapting forest management to climate change: The state of science and applications in Canada and the United States. Forest Ecology and Management 421: 84-97. doi: 10.1016/j.foreco.2018.02.037
Haunschild R., Bornmann L. & Marx W., 2016, Climate Change Research in View of Bibliometrics. PLoS ONE 11(7): e0160393. doi:10.1371/journal.pone.0160393
Hänninen H., 2016, Boreal and Temperate Trees in a Changing Climate: Modelling the Ecophysiology of Seasonality. Springer, Dordrecht, 342 pp. doi:10.1007/978-94-017-7549
Hölting L., Beckmann M., Volk M. & Cord A.F., 2019, Multifunctionality assessments – More than assessing multiple ecosystem functions and services? A quantitative literature review. Ecological Indicators 103: 226-235. doi:10.1016/j.ecolind.2019.04.009
Ivanova N., 2017, Research Methods of Timber-Yielding Plants (in the Example of Boreal Forests), [in:] M.N. Heya, R. Maiti, R.F. Pournavab, A. Carrillo-Parra (eds), Biology, Productivity and Bioenergy of Timber-Yielding Plants: An Experimental Technology. Springer, Cham, pp. 121-137. doi: 10.1007/978-3-319-61798-5_2
Ivanova N.S., 2019, Biodiversity of Old-growth Coniferous Forests in the Ural Mountains. International Journal of Bio-resource and Stress Management 10: 251-256. doi:10.23910/ijbsm/2019.10.3.1985
Ivanova N.S., 2020, Impact of Climate Changes, Timber Harvesting, and Fires on Boreal Forests (Example of the Ural Mountains, Russia), [in:] R. Maiti, H.G. Rodríguez, Ch.A. Kumari, D. Mandal (eds), Sustainable Bioresource Management: Climate Change Mitigation and Natural Resource Conservation. Apple Academic Press, CRC Press, New York, pp. 29-52. doi:10.1201/9780429284229-4
Ivanova N.S. & Zolotova E.S., 2014, Development of Forest Typology in Russia. International Journal of Bio–resource and Stress Management 5: 298-303. doi:10.5958/0976-4038.2014.00572.7
Kalashnikova I.V. & Makhnev A.K., 2013, Specific features of root system structure in the main forest-forming species of the Middle Urals growing on cinder dumps. Russian Journal of Ecology 44: 375-380. doi:10.1134/S106741361305007X
Kamlun K.U. & Arndt R.B., 2019, Expert-Based Approach on Mapping Ecosystem Services Potential Supply Incircling a Protected Areas by Integrating Matrix Model Assessment. Journal of Physics: Conference Series 1358: 012032. doi:10.1088/1742-6596/1358/1/012032
Kapralov D.S., Shiyatov S.G., Moiseev P.A. & Fomin V.V., 2006, Changes in the composition, structure, and altitudinal distribution of low forests at the upper limit of their growth in the North Ural Mountains. Russian Journal of Ecosystem Ecology 37: 367-372. doi:10.1134/S1067413606060014
Kellomäki S., 2016, Managing Boreal Forests in the Context of Climate Change: Impacts, Adaptation and Climate Change Mitigation. CRC Press, 365 pp. doi:10.1201/9781315166063
Kolesnikov B.P., Zubareva R.S. & Smolonogov E.P., 1973, Lesorastitelnye usloviya i tipy lesov Sverdlovskoj oblasti. Prakticheskoe rukovodstvo [Forest conditions and forest types of the Sverdlovsk region: The practical guide]. UNTS of Academy of Science of the USSR, Sverdlovsk, 176 pp.
Landuyt D., Broekx S., D’hondt R., Engelen G., Aertsens J., Goethals P.L.M., 2013, A review of Bayesian belief networks in ecosystem service modeling. Environ. Model. Software 46: 1-11. doi.org/10.1016/j.envsoft.2013.03.011
Lebedev Yu.V., 2011, Assessment of forest ecosystems in the economy of nature management. Ural branch of the Russian Academy of Sciences, Yekaterinburg, 574 pp.
Legoshchina O.M., Tsandekova O.L. & Kolmogorova E.Yu., 2019, Structural restructing of the sheet apparatus Betula Pendula Roth on the dumps of the coal mining industry. Izvestia of Samara Scientific Center of the Russian Academy of Sciences 2-2: 199-203.
Li-Xia G.A.O., Run-Cheng B.I. & Ming, Y.A.N., 2011, Species abundance distribution patterns of Pinus tabulaeformis forest in Huoshan Mountain of Shanxi Province, China. Journal of Plant Ecology 35: 1256-1270. doi:10.3724/sp.j.1258.2011.01256
Maiti R., Rodriguez H.G. & Ivanova N.S., 2016, Autoecology and Ecophysiology of Woody Shrubs and Trees: Concepts and Applications. John Wiley & Sons, New Jersey, USA, 352 pp.
Mengist W., Soromessa T. & Legese G., 2019, Ecosystem Services Research in Mountainous Regions: A Systematic Literature Review on Current Knowledge and Research Gaps. Science of The Total Environment 702: 134581. doi:10.1016/j.scitotenv.2019.134581
Menshchikov S.L., Baranovskii V.V. & Kuzmina N.A., 2013, Density of Scots pine undergrowth after ground fires in a zone of industrial air pollution. Russian Journal of Ecology 44: 367-370. doi:10.1134/S106741361305010X
Millennium Ecosystem Assessment, 2005, Ecosystems and human well-being: a framework for assessment. Island Press, Washington, 155 pp. https://www.millenniumassessment.org/documents/document.356.aspx.pdf [Accessed: 3 April 2020].
Mirkin B.M., Martynenko V.B. & Naumova L.G., 2014, Assessment of vegetation β-diversity on the basis of syntaxonomy. Russian Journal of Ecology 45: 103-106. doi:10.1134/S1067413614020040
Montwé D., Isaac-Renton, M., Hamann, A., Spiecker H., 2018, Cold adaptation recorded in tree rings highlights risks associated with climate change and assisted migration. Nature Communications 9(1): 1574. doi:10.1038/s41467-018-04039-5
Muller J.J., Nagel L.M. & Palik B.J., 2019, Forest adaptation strategies aimed at climate change: Assessing the performance of future climate-adapted tree species in a northern Minnesota pine ecosystem. Forest Ecology and Management 451: 117539. doi: 10.1016/j.foreco.2019.117539
Mumba M., Kutegeka S., Nakangu B., Munang R. & Sebukeera C., 2016, Ecosystem-based Adaptation (EbA) of African Mountain Ecosystems: Experiences from Mount Elgon, Uganda, [in:] N. Salzmann, C. Huggel, S.U. Nussbaumer, G. Ziervogel (eds), Climate Change Adaptation Strategies – An Upstream-downstream Perspective. Springer International Publishing Switzerland, pp. 121-140. doi: 10.1007/978-3-319-40773-9_7
Murray D.L., Peers M. J.L., Majchrzak Y.N., Wehtje M., Ferreira C. & Pickles R.S.A., 2017, Continental divide: Predicting climate-mediated fragmentation and biodiversity loss in the boreal forest. PLoS ONE 12(5): e0176706. doi: 10.1371/journal.pone.0176706
Panova N.K. & Antipina T.G., 2016, Late Glacial and Holocene environmental history on the eastern slope of the Middle Ural mountains, Russia. Quaternary International 420: 76-89. doi:10.1016/j.quaint.2015.10.035
Paraskevopulo M.F., Suntsova L.N. & Inshakov E.M., 2017, Studying of pigmentary structure of some species of wood plants in the conditions of technogenic pollution of the city of Krasnoyarsk. Conifers of the boreal area XXXV(1-2): 54-59.
Parrotta J., Yeo-Chang Y. & Camacho L.D., 2016, Traditional knowledge for sustainable forest management and provision of ecosystem services. International Journal of Biodiversity Science, Ecosystem Services & Management 12: 1-4. doi:10.1080/21513732.2016.1169580
Pavlov D.S. & Bukvareva E.N., 2007, Biodiversity and life support of humankind. Her. Russ. Acad. Sci. 77: 550-562. doi:10.1134/S1019331607060020
Polle A., Chen S.L., Eckert C. & Harfouche A., 2018, Engineering Drought Resistance in Forest Trees. Front. Plant Sci. 9: 1875. doi: 10.3389/fpls.2018.01875
Puzachenko Yu.G., 2016, Rank distributions in ecology and nonextensive statistical mechanics. Archives of Zoological Museum of Lomonosov Moscow State University 54: 42-71.
Ramakrishna A. & Gill S.S., 2018, Metabolic Adaptations in Plants During Abiotic Stress. CRC Press, Boca Raton, 420 pp.
Safina G.R. & Golosov V.N., 2018, The effect of climate change on the annual flow distribution of small rivers in the southern half of the European territory of Russia. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki 160(1): 111-125.
Sannikov S.N., Petrova I.V., Sannikova N.S., Kochybei A.A. & Sannikov D.S., 2017, Divergence of biogeocenoses within pine forest types. Russian Journal of Ecology 48: 340-349. doi:10.1134/S1067413617040142
Sannikov S.N., Tantsyrev N.V. & Petrova I.V., 2018, Invasion of Siberian pine populations in mountain tundra in the Northern Urals. Contemporary Problems of Ecology 11: 396-405. doi:10.1134/S1995425518040078
Schepaschenko D., Shvidenko A., See L., McCallum I., Fritz S., Kraxner F., Obersteiner M., Usoltsev V., Lakyda P., Vasylyshyn R., Lakyda I., Luo Y. & Myklush Y., 2017, A dataset of forest biomass structure for Eurasia. Scientific data 4: 170070. doi:10.1038/sdata.2017.70
Shaw M.R., Pendleton L., Cameron D.R., Morris B., Bachelet D., Klausmeyer K., MacKenzie J., Conklin D.R., Bratman G.N. & Lenihan J., 2011, The impact of climate change on California’s ecosystem services. Climatic Change 109: 465-484. doi:10.1007/s10584-011-0313-4
Shimalina N.D., Antonova E.V. & Pozolotina V.N., 2019, Genetic polymorphism of Plantago major populations from the radioactive and chemical polluted areas. Environmental Pollution 257: 113607. doi: 10.1016/j.envpol.2019.113607
Shitikov V.K., Zinchenko T.D. & Rozenberg G.S., 2011, Macroecology of river communities: concepts, methods, models. Cassandra, Togliatti, 255 pp.
Soares J.C., Santos C.S., Carvalho S.M.P., Pintado M.M. & Vasconcelos M.W., 2019, Preserving the nutritional quality of crop plants under a changing climate: importance and strategies. Plant and Soil 443: 1-26. doi:10.1007/s11104-019-04229-0
Straub D. & Grêt-Regamey A., 2006, A Bayesian probabilistic framework for avalanche modelling based on observations. Cold Reg. Sci. Technol. 46: 192-203. doi:1-0.1016/j.coldregions.2006.08.024
Tantsyrev N.V. & Sannikov S.N., 2008, Dynamics of environmental factors and Siberian stone pine regeneration in burned-out and clear-cut forest areas in the Urals. Russian Journal of Ecology 39: 140-144. doi:10.1134/S1067413608020112
Usoltsev V.A., Piernik A., Osmirko A.A., Tsepordey I.S., Chasovskikh V.P. & Zukow W., 2019, Forest stand biomass of Picea spp.: an additive model that may be related to climate and civilisational changes. Bulletin of Geography. Socio-economic Series 45: 133-147. doi:10.2478/bog-2019-0029
Usoltsev V.A., Voronov M.P. & Chasovskikh V.P., 2011, Net primary production of Ural forests: methods and results of automated estimating. Russian Journal of Ecology 42: 362-370. doi:10.1134/S1067413611050122
Villa P.M., Martins S.V., Rodrigues A.C., Safar N.V.H., Bonilla M.A.C. & Ali A., 2019, Testing species abundance distribution models in tropical forest successions: Implications for fine-scale passive restoration. Ecological Engineering 135: 28-35. doi: 10.1016/j.ecoleng.2019.05.015
Werners S.E., Szalai S., Zingstra H., Kὅpataki E., Beckmann A., Bos E., Civic K., Hlasny T., Hulea O., Jurek M., Koch O., Kondor A.C., Kovbasko A., Lakatos A., Lambert S., Peters R., Trombik J., van de Velde I., Zsuffa I., 2016, Climate Change Adaptation in the Carpathian Mountain Region, [in:] N. Salzmann, C. Huggel, S.U. Nussbaumer, G. Ziervogel (eds), Climate Change Adaptation Strategies – An Upstream-downstream Perspective. Springer International Publishing Switzerland, pp. 79-99. doi: 10.1007/978-3-319-40773-9_5
Westhoff V. & van der Maarel E., 1973, The Braun-Blanquet approach. Handbook of Vegetation Science 5: 617–726.
Whittaker R., 1980, Communities and Ecosystems. Progress, Moscow, 327 pp.
Yan Y., Chun-Yu Z. & Xiu-Hai Z., 2013, Species-abundance distribution patterns at different successional stages of conifer and broad-leaved mixed forest communities in Changbai Mountains, China. Journal of Plant Ecology 36: 923-934. doi:10.3724/sp.j.1258.2012.00923
Zalesova E.S., Anan'ev E.M., Osipenko A.E., Shubin D.A. & Terekhov G.G., 2019, Planting density effect on artificial pine stands stability. Forestry Bulletin 23: 22-27. doi:10.18698/2542-1468-2019-1-22-27
Zolotova E.S. & Ivanova N.S., 2015, Using D.N. Tsyganov’s scales for analysis ecological space of forest types of Middle Urals. Fundamental Research 2: 5114-5119.
Downloads
Published
How to Cite
Issue
Section
Stats
Number of views and downloads: 757
Number of citations: 3