Effect of mineral fertilizer encapsulated with zeolite and polyethylene terephthalate on the soil microbiota, pH and plant germination
DOI:
https://doi.org/10.12775/EQ.2021.007Keywords
long-acting fertilizers, soil, agro-technic, Hordeum sativum, Lolium perenne, total microbial countAbstract
Environmental risks caused by the use of traditional mineral fertilizers require new agro-technical solutions, which are encapsulated long-acting fertilizers. The use of the capsule allows to reduce the concentration of mineral compounds in the fertilizer and to minimize the adverse effects of the chemical compounds contained in it on the environment. Encapsulated fertilizers provide more efficient absorption of mineral nutrition by plants, allowing to synchronize the release of elements in accordance with the needs of the plant. The use of natural materials as fertilizer shells is faced with the problem of their low solubility and cost, and the use of synthetic coatings with the problems of their biodegradation in the environment. The development of new environmentally friendly materials for long-acting fertilizer capsules is a challenge for modern society. In this context, a universal mineral fertilizer coated with a coating of natural zeolite sorbent and diethylene glycol (DEG) modified polyethyl terephthalate (PET) is promising. We analyzed the influence of fertilizer on the kinetics of soil pH change, the dynamics of the total microbial count and the increase in the number of microorganisms and the germination of Hordeum sativum and Lolium perenne. The application of fertilizer for 28 days of the experiment led to decrease in soil pH by 0.3. In the presence of encapsulated fertilizer the germination of ryegrass seeds was 3.51 times higher, and ones of barley 4.14 times higher than without fertilizer. The fertilizer provided a prolonged release of minerals, which had a positive effect on the germination of barley and ryegrass plants, stimulated plant growth and increased the total number of microorganisms in the soil as an important indicator of the efficiency of agricultural technology.References
Chen J., Lü S., Zhang Z., Zhao X., Li X., Ning P. & Liu M., 2018, Environmentally friendly fertilizers: A review of materials used and their effects on the environment. Science of the Total Environment 613/614: 829–839.
Danso D., Schmeisser C., Chow J., Zimmermann W., Wei R., Leggewie C. & Streit W.R., 2018, New Insights into the Function and Global Distribution of Polyethylene Terephthalate (PET)-Degrading Bacteria and Enzymes in Marine and Terrestrial Metagenomes. Applied and Environmental Microbiology 84 (8): 13.
Feng C., Lü S., Gao C., Wang X., Xu X., Bai X., Gao N., Liu M. & Wu L., 2015, “Smart” fertilizer with temperature-and pH-responsive behavior via surface-initiated polymerization for controlled release of nutrients. ACS Sustainable Chemistry & Engineering 3: 3157–3166.
Frey S.D., Knorr M., Parrent J.L. & Simpson R.T., 2004, Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests. Forest Ecology and Management 196: 159–171.
Gak V.S., 2011, Rozrobka ta vlastyvosti plivkoutvoriuvachiv dlia fleksohrafskykh farb na osnovi vtorynnoho polietylentereftalatu [Development and properties of film formers for flexographic paints based on secondary polyethylene terephthalate]. Dysertatsiias Tekhnolohiia polimernykh i kompozytsiinykh materialiv. NU „Lvivska politekhnika”, Lviv (in Ukrainian).
Ghatge S., Yang Y., Ahn, J. & Hur H., 2020, Biodegradation of polyethylene: a brief review. Applied Biological Chemistry 63: 1–14.
Glaser J.A. Biological Degradation of Polymers in the Environment, 2019, In: Gomiero A. (Ed) Plastics in the Environment. Norwegian Research Center AS, Intech open.
GOST 17.4.4.02-84, 2006, Mejgosudarstvennyiy Standart. Ohrana prirody. Pochvy. Metody otbora i podgotovki prob dlya himicheskogo, bakteriologicheskogo, gelmintologicheskogo analiza. [Interstate standard. Nature protection. Soils. Methods of selection and preparation of soils samples for chemical, bacteriological, helmintological analysis]. Izdatelstvo standartov, Standartinform, Moskva (in Russian).
Hannaway D., Fransen S., Cropper J., Teel M., Chaney M., Griggs T., Halse R., Hart J., Cheeke P., Hansen D., Klinger R. & Lane W., 1999, Perennial ryegrass (Lolium perenne L.), PNW 503: 1-20.
He Y., Wu Z., Tu L., Han Y., Zhang G. & Li C., 2015, Encapsulation and characterization of slow-release microbial fertilizer from the composites of bentonite and alginate. Applied Clay Science 109: 68–75.
Kliuchnikova N., 2018, Yak zminylysia posivy na ukrainskykh poliakh za 10 rokiv? [How have the crops in the Ukrainian fields changed over 10 years?]. https://agroportal.ua/ua/publishing/infografika/kak-izmenilis-posevy-na-ukrainskikh-polyakh-za-10-let
Lauber C.L., Hamady M., Knight R. & Fierer N., 2009, Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology 75: 5111–5120.
Lebid S.H. & Fedorovich H.T., 2013, Osnovy zahalnoi mikrobiolohii [Fundamentals of general microbiology]. Vydavnytstvo ChDU im. Petra Mohyly, Mykolaiv.
Liu B., He L., Wang L., Li T., Li C., Liu H., Luo Y. & Bao R., 2018, Protein Crystallography and Site-Direct Mutagenesis Analysis of the Poly(ethylene terephthalate) Hydrolase PETase from Ideonella sakaiensis. ChemBioChem 19 (14): 1471–1475.
Lypyn A.H., Nebukyn V.O. & Lypyn A.A., 2018, Kapsulyrovanye hranul v polymernye obolochky kak metod sozdanyia myneralnykh udobrenyi s rehulyruemoi skorostiu vysvobozhdenyia pytatelnykh veshchestv [Encapsulation of granules in polymer shells as a method of creating mineral fertilizers with adjustable rate of nutrient release], Sovremennye-naukoemkye tekhnolohyy. Rehyonalnoe prylozhenye 3(51): 86-91 (in Russian).
Malavath B., Kumar R. & Manasa K., 2017, Polymer coated fertilizers as advance technique in nutrient management. An Asian Journal of Soil Science 12(1): 228-232.
Nahurskyi O.A., 2011, Kapsuliuvannia hranulovanykh mineralnykh dobryv plivkamy na osnovi polimernykh vidkhodiv v aparati psevdozridzhenoho stanu [Encapsulation of granular mineral fertilizers with films based on polymer waste in a fluidized bed apparatus]. Visnyk Natsionalnoho Tekhnichnoho Universytetu „Kharkivskyi politekhnichnyi instytut”. Novi rishennia u suchasnykh tekhnolohiiakh 23: 21-25 (in Ukrainian).
Nakhro N. & Dkhar M.S., 2010, Impact of Organic and Inorganic Fertilizers on Microbial Populations and Biom ass Carbon in Paddy Field Soil. Journal of Agronomy 9(3): 102 – 110.
Nazaryuk V.M., 2007, Pochvenno-ekologicheskie osnovy optimizacii pitaniya rastenij [Soil and ecological bases of plant nutrition optimization]. Izd-vo SO RAN, Novosibirsk (in Russian).
Pan P., Jiang H., Zhang J., Yang J., Li S., Liu S., Zhang S. & Lei M., 2016, Shifts in soil bacterial communities induced by the controlled-release fertilizer coatings. Journal of Integrative Agriculture 15(12): 2855–2864.
Prasad R., 2013, Population growth, food shortages and ways to alleviate hunger. Current Science 105: 32–36.
Pisarenko V.N., 2008, Ekologicheskie problemy pri ispolzovanii mineralnyh udobrenij: Puti vozmozhnogo zagryazneniya okruzhayushej sredy udobreniyami i meropriyatiya po ego predotvrasheniyu [Environmental problems when using mineral fertilizers: Ways of possible environmental pollution by fertilizers and measures to prevent it]. Agroekologiya, Poltava (in Russian).
Qiao D., Liu H., Yu L., Bao X., Simon G. P., Petinakis E. & Chen L., 2016, Preparation and characterization of slow-release fertilizer encapsulated by starch-based superabsorbent polymer. Carbohydrate Polymers 147: 146–154.
Rhodes C.J., 2010, Properties and applications of zeolites, Science Progress 93(3): 223–284.
Rusyn I.B., Moroz O.M., Karabyn V.V., Kulachkovs’kii O.R. & Hudz’ S.P., 2003, Biodehradatsiia vuhlevodniv nafty drizhdzhamy rodu Candida [Biodegradation of oil hydrocarbons by Candida yeast]. Mikrobiolohichnyi Zhurnal (Kiev, Ukraine: 1993) 65 (6): 36–42 (in Ukrainian).
Sabadini R.C., Martins V.C.A. & Pawlicka A., 2015, Synthesis and characterization of gellan gum: chitosan biohydrogels for soil humidity control and fertilizer release. Cellulose 22: 2045–2054.
Samokhvalova V., Starchenko O., Chebanova V., Chaban V., Podobed O. & Samokhvalova P., 2019, Vyznachennia mikroelementnoho skladu hruntu za yoho mikrobiolohichnymy ta biokhimichnymy pokaznykamy transformatsii spoluk tsyklu nitrohenu [Determination of microelement composition of soil by its microbiological and biochemical indicators of transformation of nitric cycle compounds]. Visnyk Lvivskoho universytetu. Seriia biolohichna 80: 129–145 (in Ukrainian).
Tanasupawat S., Takehana T., Yoshida S., Hiraga K. & Oda K., 2016, Ideonella sakaiensis sp. nov., isolated from a microbial consortium that degrades poly(ethylene terephthalate). International Journal of Systematic and Evolutionary Microbiology 66: 2813–2818.
Trufanova A. A., 2015, Vliyanie kompleksnyh udobrenij na svojstva pochv [The effect of complex fertilizers on soil properties]. Biologicheskie nauki, 548-553 (in Russian).
Tymchuk I. & Malovanyj M., 2014, Kapsulirovanie udobrenij - put k snizheniyu zagryazneniya i povysheniya urozhajnosti [Fertilizer encapsulation - a way to reduce pollution and increase productivity]. Ustojchivoe razvitie, Varna, 23: 151-156 (in Russian).
Yoshida S., Hiraga K., Takehana T., Taniguchi I., Yamaji H., Maeda Y., Toyohara K., Miyamoto K., Kimura Y. & Oda K., 2016, A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351 (6278): 1196–1199.
Downloads
Published
How to Cite
Issue
Section
Stats
Number of views and downloads: 1003
Number of citations: 3