Allometric Models to Predicate Single-Tree Biomass in the Eurasian Larix spp. Forest
DOI:
https://doi.org/10.12775/EQ.2021.003Keywords
genus Larix, equations additivity, , biosphere role of forests, biomass of single-trees, allometric models, sample plots, biological productivity, transcontinental tables of biomassAbstract
Today, estimating of biological productivity or carbon-depositing ability of forests is going on the global level, and its increase is one of the major factors of climate stabilization. In recent years, two trends in the harmonization of allometric models of tree biomass have been developing. The first of them is related to ensuring the additivity of the biomass component composition, and the second one – to the search for the so-called generic model applicable to a wide range of environmental conditions. However, all "pseudo-generic" models give significant biases in their application in local conditions. In our modeling, we adhere to the principle of biomass additivity, split "generic" model into regional variants by introducing dummy variables, and build the model at the transcontinental level for the first time. When using the unique in terms of the volume of database of trees of the genus Larix Mill. In a number of 420 sample trees, the trans-Eurasian additive allometric models of biomass of trees for Eurasian larch forests are developed, and thereby the combined problem of model additivity and generality is solved. The additive model of tree biomass of Larix is harmonized in two ways: it eliminated the internal contradictions of the component and the total biomass equations, and in addition, it takes into account regional differences of trees of equal sizes on their biomass, i.e. it reflects the regional peculiarities of the component structure of tree biomass.
References
Baskerville G.L., 1972, Use of logarithmic regression in the estimation of plant biomass. Canadian Journal of Forest Research 2: 49-53.
Bi H., Long Y., Turner J., Lei Y., Snowdon P., Li Y., Harper R., Zerihun A. & Ximenes F., 2010, Additive prediction of aboveground biomass for Pinus radiata (D. Don) plantations. Forest Ecology and Management 259: 2301-2314.
Chave J., Riera B. & Dubois M.A., 2001, Estimation of biomass in a neotropical forest of French Guiana: spatial and temporal variability. Journal of Tropical Ecology 17: 79-96.
Cunia T. & Briggs R.D., 1984, Forcing additivity of biomass tables: some empirical results. Canadian Journal of Forest Research 14: 376-384.
Dong L., Zhang L. & Li F., 2015, A three-step proportional weighting system of nonlinear bi-omass equations. Forest Science 61(1): 35-45.
Fu L.Y., Zeng W.S., Tang S.Z., Sharma R.P. & Li H.K., 2012, Using linear mixed model and dummy variable model approaches to construct compatible single-tree biomass equations at different scales – A case study for Masson pine in Southern China. Journal of Forest Science 58(3): 101-115.
Grigoriev А.А. & Budyko М.I., 1956, On the periodic law of geographical zoning. Doklady Akadimii Nauk SSSR 110(1): 129-132.
Hubau W., Lewis S.L., Phillips O.L., Affum-Baffoe K., Beeckman H., Cuní-Sanchez A., Daniels A.K., Ewango C.E.N., Fauset S., Mukinzi J.M., Sheil D., Sonké B., Sullivan M.J.P., Sunderland T.C.H., Taedoumg H., Thomas S.C., White L.J.T., Abernethy K.A., Adu-Bredu S., Amani C.A., Baker T.R., Banin L.F., Baya F., Begne S.K., Bennett A.C., Benedet F., Bitariho R., Bocko Y.E., Boeckx P., Boundja P., Brienen R.J.W., Brncic T., Chezeaux E., Chuyong G.B., Clark C.J., Collins M., Comiskey J.A., Coomes D.A., Dargie G.C., de Haulleville T., Kamdem M.N.D., Doucet J.L., Esquivel-Muelbert A., Feldpausch T.R., Fofanah A., Foli E.G., Gilpin M., Gloor E., Gonmadje C., Gourlet-Fleury S., Hall J.S., Hamilton A.C., Harris D.J., Hart T.B., Hockemba M.B.N., Hladik A., Ifo S.A., Jeffery K.J., Jucker T., Yakusu E.K., Kearsley E., Kenfack D., Koch A., Leal M.E., Levesley A., Lindsell J.A., Lisingo J., Lopez-Gonzalez G., Lovett J.C., Makana J.R., Malhi Y., Marshall A.R., Martin J., Martin E.H., Mbayu F.M., Medjibe V.P., Mihindou V., Mitchard E.T.A., Moore S., Munishi P.K.T., Bengone N.N., Ojo L., Ondo F.E., Peh K.S., Pickavance G.C., Poulsen A.D., Poulsen J.R., Qie L., Reitsma J., Rovero F., Swaine M.D., Talbot J., Taplin J., Taylor D.M., Thomas D.W., Toirambe B., Mukendi J.T., Tuagben D., Umunay P.M., van der Heijden G.M.F., Verbeeck H., Vleminckx J., Willcock S., Wöll H., Woods J.T. &, Zemagho L., 2020, Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579: 1-27.
Komarov V.L., 1921, Meridional’naya zonal’nost’ organizmov (Meridional zonality of organisms), Dnevnik I vserossiiskogo sezda russkikh botanikov v Petrograde (Diary of the 1st All-Russian Congress of Russian botanists in Petrograd) 3: 27-28.
Reed D.D. & Green E.J., 1985, A method of forcing additivity of biomass tables when using nonlinear models. Canadian Journal of Forest Research 15: 1184-1187.
Tang S., Zhang H. & Xu H., 2000, Study on establish and estimate method of compatible biomass model. Scientia Silvae Sinica 36: 19-27 (in Chinese with English abstract).
Usoltsev V.A., 2016, Single-tree biomass of forest-forming species in Eurasia: database, climate-related geography, weight tables. Ural State Forest Engineering University, Yekaterinburg, 336 pp. http://elar.usfeu.ru/handle/123456789/5696
Usoltsev V.A., Kolchin K.V. & Voronov M.P., 2017, Dummy variables and biases of allometric models when local estimating tree biomass (on an example of Picea L.). Eко-potencial 1(17): 22-39. http://elar.usfeu.ru/bitstream/123456789/6502/1/eko-17-02.pdf
Usoltsev V.A., Shobairi S.O.R. & Chasovskikh V.P., 2018, Geographic gradients of forest biomass of two needled pines on the territory of Eurasia. Ecological Questions 29 (2): 9-17.
Usoltsev V.A., Zukow W., Osmirko A.A., Tsepordey I.S. & Chasovskikh V.P., 2019a, Additive biomass models for Larix spp. single-trees sensitive to temperature and precipitation in Eurasia. Ecological Questions 30(2): 57-67.
Usoltsev V.A., Zukow W., Osmirko A.A., Tsepordey I.S., Chasovskikh V.P., 2019b, Additive biomass models for Quercus spp. single-trees sensitive to temperature and precipitation in Eurasia. Ecological Questions 30 (4): 29-40.
WFO, 2020,World Flora Online. Published on the Internet. http://www.worldfloraonline.org [Accessed: 16 May 2020]
Downloads
Published
How to Cite
Issue
Section
Stats
Number of views and downloads: 283
Number of citations: 0