Forest stand biomass and NPP models sensitive to winter tempera-ture and annual precipitation for Betula spp. in Eurasia
DOI:
https://doi.org/10.12775/EQ.2020.018Keywords
Betula spp. forests, forest biomass, biological productivity, net primary produc-tion, regression equations, mean January temperature, annual mean precipitation, the principle of limiting factors by Liebig-ShelfordAbstract
Forest ecosystems, as sinks of atmospheric carbon, play an important role in reduc-ing CO2 emissions and preventing annual temperatures from rising. On the other hand, cli-mate change entails changes in the structure and functions of all the biota, including forest cover. Therefore, we attempted to model Betula spp. ecosystem biomass and annual net pri-mary production (NPP) (t ha-1) using the data from 650 forest stands for biomass, 245 for NPP and biomass, as well as climate data on the Trans-Eurasian hydrothermal gradients. The model involves regional peculiarities of age and morphology of the forests. It is found that the reaction of birch biomass and NPP structure on temperature and precipitation corresponds to the principle of limiting factors by Liebig-Shelford but in different proportions for different species. Since the minimum values of biomass and NPP occur in regions with minimum pre-cipitation and minimum temperature, these two factors are limiting in terms of biomass and NPP of birches. The same phenomenon is typical for firs, partly typical for spruces and very differ for larches and pines. The development of such models for basic forest-forming species grown in Eurasia will give possibility to predict any changes in the biological productivity of forest cover of Eurasia in relation to climate change.References
Anderson K.J., Allen A.P., Gillooly J.F. & Brown J.H., 2006, Temperature-dependence of biomass accumulation rates during secondary succession. Ecology Letters 9: 673-682.
Baskerville G.L., 1972, Use of logarithmic regression in the estimation of plant biomass. Ca-nadian Journal of Forest Research 2: 49-53.
Draper N. & Smith H., 1966, Applied regression analysis. New York, Wiley. Translated under the title Prikladnoi regressionnyi analiz. “Statistika” Publishing, Moscow, 392 pp.
Esslen J., 1905, Das Gesetz des abnehmenden Bodenertrages seit Justus von Liebig: Eine dogmengeschichtliche Untersuchung. J. Schweitzer Verlag (Arthur Sellier), München, 290 pp.
Fang O., Yang Wang Y. & Shao X., 2016, The effect of climate on the net primary productiv-ity (NPP) of Pinus koraiensis in the Changbai Mountains over the past 50 years. Trees 30: 281–294.
Felton A., Nilsson U., Sonesson J., Felton A.M., Roberge J.-M., Ranius T., Ahlström M., Bergh J., Björkman C., Boberg J., Drössler L., Fahlvik N., Gong P., Holmström E., Keskitalo E.C., Klapwijk M.J., Laudon H., Lundmark T., Niklasson M., Nordin A., Pettersson M., Stenlid J., Sténs A. & Wallertz K., 2016, Replacing monocultures with mixed-species stands: Ecosystem service implications of two production forest alternatives in Sweden. Ambio 45(Supplement 2): 124–139.
Givnish T.J., 2002, Adaptive significance of evergreen vs. deciduous leaves: Solving the triple paradox. Silva Fennica 36(3): 703–743.
Gower S.T. & Richards J.H., 1990, Larches: Deciduous conifers in an evergreen world. Bio-Science 40(11): 818-826.
Gower S.T., McMurtrie R.E. & Murty D., 1996, Aboveground net primary production decline with stand age: potential causes. Tree 11(9): 378-382.
Gower S.T., Krankina O., Olson R.J., Apps M., Linder S. & Wang C., 2001, Net primary pro-duction and carbon allocation patterns of boreal forest ecosystems. Ecological Applications 11(5): 1395-1411.
He M., Yang B., Rossi S., Bräuning A., Shishov V. & Kang Sh., 2019, Simulated and pre-dicted responses of tree stem radial growth to climate change - A case study in semiarid north central China. Dendrochronologia 58: 125632.
Houghton R.A., Hall F. & Goetz S.J., 2009, The importance of biomass in the global carbon cycle. Geophysical Research Letters 114: G00E03.
Huston M.A. & Wolverton S., 2009, The global distribution of net primary production: resolv-ing the paradox. Ecological Monographs 79: 343–377.
Kharuk V., Ranson K., Im S. & Petrov I., 2015, Climate-induced larch growth response with-in the central Siberian permafrost zone. Environmental Research Letters 10(12):125009. doi: 10.1088/1748-9326/10/12/125009
Keeling H.C. & Phillips O.L., 2007, The global relationship between forest productivity and biomass. Global Ecology and Biogeography 16: 618-631.
Laing J., & Binyamin J., 2013, Climate change effect on winter temperature and precipitation of Yellowknife, Northwest Territories, Canada from 1943 to 2011. American Journal of Climate Change 2: 275-283.
Lapenis A., Shvidenko A., Shepaschenko D., Nilsson S. & Aiyyer A., 2005, Acclimation of Russian forests to recent changes in climate. Global Change Biology 11: 2090-2102. doi: 10.1111/j.1365-2486.2005.01069.x
Levy P.E., Hale S.E. & Nicoll B.C., 2004, Biomass expansion factors and root : shoot ratios for coniferous tree species in Great Britain. Forestry 77(5): 421-430. doi: 10.1093/forestry/77.5.421
Liebig Justus von, 1840, Die organische Chemie in ihrer Anwendung auf Agricultur und Physiologie. Braunschweig, Verlag Vieweg, [in:] Deutsches Textarchiv <http://www.deutschestextarchiv.de/liebig_agricultur_1840> [Accessed: 26.11.2019].
Liepa I.Ya., 1980, Dynamics of Wood Stock: Forecast and Ecology. Zinatne, Riga, 170 pp. (in Russian).
Lieth H., 1974, Modeling the primary productivity of the world. International Section for Ecology Bulletin 4: 11-20.
Magnani F., Mencuccini M. & Grace J., 2000, Age-related decline in stand productivity: the role of structural acclimation under hydraulic constraints. Plant, Cell & Envi-ronment 23: 251–263.
Molchanov A.A., 1971, Productivity of organic mass in the forests of different zones. "Nau-ka" Publishing House, Moscow, 275 pp. (in Russian).
Nemani R.R., Keeling C.D., Hashimoto H., Jolly W.M., Piper S.C., Tucker C.J., Myneni R.B. & Running S.W., 2003, Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300 (5625): 1560-1563.
Ni J., Zhang X.-S., & Scurlock J.M.O., 2001, Synthesis and analysis of biomass and net pri-mary productivity in Chinese forests. Annals of Forest Science 58: 351-384.
Odum E.P., 1975, Fundamentals of Ecology. “Mir” Publishing, Moscow, 740 pp. (Translated from: E.P. Odum. Fundamentals of Ecology, The third ed. W.B. Saunders Company, Philadelphia-London-Toronto, 1971).
Rozenberg G.S., Ryansky F.N., Lazareva N.V., Saksonov S.V., Simonov Yu.V. & Khasaev G.R., 2016, Common and Applied Ecology. Samara State University of Eco-nomics Press, Samara-Togliatti, 452 pp. (in Russian).
Shelford V.E., 1913, Animal communities in temperate America: as illustrated in the Chicago region; a study in animal ecology, Issue 5, Part 1. Pub. for the Geographic Socie-ty of Chicago by the University of Chicago Press, Chicago, 362 pp.
Stegen J.C., Swenson N.G., Enquist B.J., White E.P., Phillips O.L., Jorgensen P.M., Weiser M.D., Mendoza A.M. & Vargas P.N., 2011, Variation in above-ground forest biomass across broad climatic gradients. Global Ecology and Biogeography 20: 744–754.
Taylor W.P., 1934, Significance of extreme or intermittent conditions in distribution of species and management of natural resources, with a restatement of Liebig’s law of the minimum. Ecology 15: 274-379.
Usoltsev V.А., 2004, On the application of regression analysis in forestry problems. Lesnaya Taksatsiya i Lesoustroistvo (Forest Mensuration and Management) 1(33): 49-55 (in Russian).
Usoltsev V.А., 2007a, Biological productivity of Northern Eurasia’s forests: Methods, da-tasets, applications. Ural State Forest Engineering University, Yekaterinburg, 636 pp. (Available at: http://elar.usfeu.ru/handle/123456789/3281).
Usoltsev V.А., 2007b, Some methodological and conceptual uncertainties in estimating the income component of the forest carbon cycle. Russian Journal of Ecology 38(1): 1–10. doi: 10.1134/S1067413607010018
Usoltsev V.A., 2010, Eurasian forest biomass and primary production data. Ural Branch of Russian Academy of Sciences, Yekaterinburg, 570 pp. (in Russian). (Available at: http://elar.usfeu.ru/handle/123456789/2606).
Usoltsev V.A., 2013, Forest biomass and primary production database for Eurasia: CD-version. The second ed., enlarged and re-harmonized. Ural State Forest Engi-neering University, Yekaterinburg, (Available at: http://elar.usfeu.ru/bitstream/123456789/3059/4/Biomass%20Database%20-%20Eurasia.xls).
Usoltsev V.A., 2017, Foliage efficiency of forest-forming species in the climatic gradients of Eurasia. Sibirskij Lesnoj Zurnal (Siberian Journal of Forest Science) 4: 50–63 (in Russian with English abstract). doi: 10.15372/SJFS20170405
Usoltsev V., 2019, Forest Arabesques, or Sketches of Our Trees’ Life. The 3rd. Edition, modified. Radomska Szkoła Wyższa w Radomiu, Radom, Poland, 200 pp. doi: http://dx.doi.org/10.5281/zenodo.2551187
Usoltsev V.A., Shobairi S.O.R., Tsepordey I.S. & Chasovskikh V.P., 2019a, Modelling forest stand biomass and net primary production with the focus on additive models sensitive to climate variables for two-needled pines in Eurasia. Journal of Cli-mate Change 5(1): 41-49. doi: 10.3233/JCC190005
Usoltsev V.А., Merganičová K., Konôpka B., Osmirko A.A., Tsepordey I.S. & Chasovskikh V.P., 2019b, Fir (Abies spp.) stand biomass additive model for Eurasia sensitive to winter temperature and annual precipitation. Central European Forestry Jour-nal 65: 166-179. doi: 10.2478/forj-2019-0017
Usoltsev V., Piernik A., Osmirko A., Tsepordey I., Chasovskikh V. & Zukow W., 2019c, For-est stand biomass of Picea spp.: an additive model that may be related to cli-mate and civilisational changes. Bulletin of Geography. Socio-Economic Series 45: 133-147. doi: http://dx.doi.org/10.1515/18860
Usoltsev V., Kovyazin V., Osmirko A., Tsepordey I. & Chasovskikh V., 2019d, Additive model of Larix sp. forest stand biomass sensitive to temperature and precipita-tion variables in Eurasia. IOP Conference Series: Earth and Environmental Sci-ence 316: 1-9. 012074. doi:10.1088/1755-1315/316/1/012074.
Usoltsev V.A., Shobairi S.O.R., Osmirko A.A., Tsepordey I.S. & Chasovskikh V.P., 2020, Susceptible Models to Climate Variables for Predicting the Stand Biomass and NPP of Larix spp in Eurasia. Systematics and Biodiversity (in press: TSAB-2019-0117).
Wang X., Fang J. & Zhu B., 2008, Forest biomass and root-shoot allocation in northeast Chi-na. Forest Ecology and Management 255 (12): 4007-4020. DOI: 10.1016/j.foreco.2008.03.055
World Flora Online. http://www.worldfloraonline.org/
World Weather Maps, 2007. URL: https://www.mapsofworld.com/referrals/weather/ (Ac-cessed: 15.06.2018].
Downloads
Published
How to Cite
Issue
Section
Stats
Number of views and downloads: 528
Number of citations: 0