Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Ecological Questions

Regulations and treatment strategies for pharmaceutical wastewater - A review
  • Home
  • /
  • Regulations and treatment strategies for pharmaceutical wastewater - A review
  1. Home /
  2. Archives /
  3. Vol. 36 No. 4 (2025): Forthcoming /
  4. Articles

Regulations and treatment strategies for pharmaceutical wastewater - A review

Authors

  • Afzal Husain Khan Jazan University https://orcid.org/0000-0001-8883-9019

DOI:

https://doi.org/10.12775/EQ.2025.039

Keywords

Aquatic environment, Emerging contaminants, Hospital Wastewater, Regulation, Public Health

Abstract

Pharmaceutical residues are recognized as emerging micropollutants that are predominantly present in the environment, mainly due to direct discharge or inefficiently treated effluents from wastewater treatment plants. Although conventional treatment partially removes pharmaceuticals (less than 50% for most pharmaceutical compounds), it is incapable of completely eliminating pharmaceuticals from wastewater due to the complexity of the compounds and inappropriate operational conditions. However, advanced treatment technology demonstrated a removal rate of over 90%, but cost and energy requirements are considered important aspects. Additionally, a legal and regulatory framework needs to be implemented to control the discharge of pharmaceuticals. Herein, a comprehensive review of global consumption and pathways, as well as guidelines for the efficient removal of pharmaceuticals. Additionally, we examine current developments regarding strict guidelines and policies imposed by various regions aimed at controlling pharmaceutical residues. Finally, we discuss the future outlook for developing new approaches and innovative treatment technologies to reduce pharmaceutical residues in the environment.

References

Achak M., S. Alaoui Bakri, Y. Chhiti, F.E. M’hamdi Alaoui, N. Barka, & W. Boumya, 2021, SARS-CoV-2 in hospital wastewater during outbreak of COVID-19: A review on detection, survival and disinfection technologies. Sci. Total Environ. 761, 143192. https://doi.org/10.1016/j.scitotenv.2020.143192

Aydın S., A. Ulvi, F. Bedük, & M.E. Aydın, 2022, Pharmaceutical residues in digested sewage sludge: Occurrence, seasonal variation and risk assessment for soil, Sci. Total Environ. 817, 152864. https://doi.org/10.1016/j.scitotenv.2021.152864

Ayres I., & J. Braithwaite, 1992, Responsive Regulation: Transcending the Deregulation Debate. OXFORD UNIVERSITY PRESS. http://johnbraithwaite.com/wp-content/uploads/2016/06/Responsive-Regulation-Transce.pdf

aus der Beek T., F.A. Weber, A. Bergmann, S. Hickmann, I. Ebert, A. Hein, & A. Küster, 2016, Pharmaceuticals in the environment-Global occurrences and perspectives. Environ. Toxicol. Chem. 35: 823–835. https://doi.org/10.1002/etc.3339

Bennett K.A., S.D. Kelly, X. Tang, & B.J. Reid, 2017, Potential for natural and enhanced attenuation of sulphanilamide in a contaminated chalk aquifer. J. Environ. Sci. 62: 39–48. https://doi.org/10.1016/j.jes.2017.08.010

BIO Intelligence Service, 2013, Study on the environmental risks of medicinal products, Final Report prepared for Executive Agency for Health and Consumers. BIO Intelligence Service, Paris.

Branchet P., N. Ariza Castro, H. Fenet, E. Gomez, F. Courant, D. Sebag, J. Gardon, C. Jourdan, B. Ngounou Ngatcha, I. Kengne, E. Cadot, & C. Gonzalez, 2019, Anthropic impacts on Sub-Saharan urban water resources through their pharmaceutical contamination (Yaoundé, Center Region, Cameroon). Sci. Total Environ. 660: 886–898. https://doi.org/10.1016/j.scitotenv.2018.12.256

Carraro E., S. Bonetta, & S. Bonetta, 2018, Hospital wastewater: Existing regulations and current trends in management. Handb. Environ. Chem. 60: 1–16. https://doi.org/10.1007/698_2017_10

Carter L.J., B. Chefetz, Z. Abdeen, & A.B.A. Boxall, 2019, Emerging investigator series: towards a framework for establishing the impacts of pharmaceuticals in wastewater irrigation systems on agro-ecosystems and human health. Environ. Sci. Process. Impacts 21: 605–622. https://doi.org/10.1039/C9EM00020H

Diwan V., A.J. Tamhankar, M. Aggarwal, S. Sen, R.K. Khandal, & C.S. Lundborg, 2009, Detection of antibiotics in hospital effluents in India. Curr. Sci. 97: 1752–1755. http://www.jstor.org/stable/24107255

Dolar D., S. Pelko, K. Košutić, & A.J.M. Horvat, 2012, Removal of anthelmintic drugs and their photodegradation products from water with RO/NF membranes. Process Saf. Environ. Prot. 90: 147–152. https://doi.org/10.1016/j.psep.2011.08.007

dos Santos C.R., G.S. Arcanjo, L.V. de Souza Santos, K. Koch, & M.C.S. Amaral, 2021, Aquatic concentration and risk assessment of pharmaceutically active compounds in the environment. Environ. Pollut. 290, 118049. https://doi.org/10.1016/j.envpol.2021.118049

Ebele A.J., T. Oluseyi, D.S. Drage, S. Harrad, & M. Abou-Elwafa Abdallah, 2020, Occurrence, seasonal variation and human exposure to pharmaceuticals and personal care products in surface water, groundwater and drinking water in Lagos State, Nigeria. Emerg. Contam. 6: 124–132. https://doi.org/10.1016/j.emcon.2020.02.004

EC, 2020, Establishing a watch list of substances for Union-wide monitoring in the field of water policy pursuant to Directive 2008/105/EC of the European Parliament and of the Council. Off. J. Eur. Union 63: 1–4.

EEA, 2010, Pharmaceuticals in the environment: results of an EEA workshop. Copenhagen, European Environment Agency (EEA Technical Report No. 1).

Elias P.S., 1973, Environmental Poisons. Nature 245, 431. https://doi.org/10.1038/245431a0.

El-Shafey E.-S.I., H. Al-Lawati, & A.S. Al-Sumri, 2012, Ciprofloxacin adsorption from aqueous solution onto chemically prepared carbon from date palm leaflets. J. Environ. Sci. 24: 1579–1586. https://doi.org/10.1016/S1001-0742(11)60949-2

Emmanuel E., M.G. Pierre, & Y. Perrodin, 2009, Groundwater contamination by microbiological and chemical substances released from hospital wastewater: Health risk assessment for drinking water consumers. Environ. Int. 35: 718–726. https://doi.org/https://doi.org/10.1016/j.envint.2009.01.011

EPA, 1995, National Pollutant Discharge Elimination System and Pretreatment Programs; State and Local Assistance Programs; Effluent Limitations Guidelines and Standards; Public Water Supply and Underground Injection Control Programs: Removal of Legally Obsolete or R.

EPA, 2003, Part III: Environmental Protection Agency 40 CFR 439: Effluent Limitations Guidelines, Pre-treatment Standards, and New Source Performance Standards for the Pharmaceutical Manufacturing Point Source Category; Direct Final Rule and Proposed Rule. https://www.govinfo.gov/content/pkg/FR-2003-03-13/pdf/03-5716.pdf

EPA, 2006, Permit Guidance Document: Pharmaceutical Manufacturing Point Source Category (40 CFR Part 439). https://www.epa.gov/sites/default/files/2015-10/documents/pharmaceutical-permit-guidance_2006.pdf

EPA, 2010, Guidance document: Best management practices for unused pharmaceuticals at health care facilities. Draft. Washington, DC, United States Environmental Protection Agency (EPA-821-R-10-006). http://water.epa.gov/scitech/wastetech/guide/upload/%0Aunuseddraft.pdf)

EU, 2007, Registration, evaluation, authorization and restriction of chemicals. establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as well as Council Dir.

FDA, 2021, Fact Sheet: FDA at a Glance, US Food Drug Adm. https://www.fda.gov/about-fda/fda-basics/fact-sheet-fda-glance.

Fent K., A.A. Weston, & D. Caminada, 2006, Ecotoxicology of human pharmaceuticals. Aquat. Toxicol. 76: 122–159. https://doi.org/10.1016/j.aquatox.2005.09.009

FOEN, 2015, Federal Office for the Environment, Switzerland, 2015, Environment Switzerland 2015, Water Quality Report. Retrieved 09 November 2017 from. https://www.bafu. admin.ch/dam/bafu/.../water_environmentswitzerland2015.pdf, Fedlex.

Gagnon Edith, 2009, Pharmaceutical Disposal Programs for the Public: A Canadian Perspective. Health Canada Environmental Impact Initiative. https://cdn.ymaws.com/www.productstewardship.us/resource/resmgr/imported/Takeback%20%282%29.pdf, Heal. Canada. https://publications.gc.ca/collections/collection_2008/ec/En13-2-8-2007E.pdf

Ghosh S., O. Falyouna, H. Onyeaka, A. Malloum, C. Bornman, S.S. Al Kafaas, Z.T. Al-Sharify, S. Ahmadi, M.H. Dehghani, A.H. Mahvi, S. Nasseri, I. Tyagi, M. Mousazadeh, J.R. Koduru, & A.H. Khan, Suhas, 2023, Recent progress on the remediation of metronidazole antibiotic as emerging contaminant from water environments using sustainable adsorbents: A review. J. Water Process Eng. 51, 103405. https://doi.org/10.1016/j.jwpe.2022.103405

Hanna N., P. Sun, Q. Sun, X. Li, X. Yang, X. Ji, H. Zou, J. Ottoson, L.E. Nilsson, B. Berglund, O.J. Dyar, A.J. Tamhankar, & C. Stålsby Lundborg, 2018, Presence of antibiotic residues in various environmental compartments of Shandong province in eastern China: Its potential for resistance development and ecological and human risk. Environ. Int. 114: 131–142. https://doi.org/10.1016/j.envint.2018.02.003

Hocaoglu S.M., M.D. Celebi, I. Basturk, & R. Partal, 2021, Treatment-based hospital wastewater characterization and fractionation of pollutants. J. Water Process Eng. 43, 102205. https://doi.org/10.1016/j.jwpe.2021.102205

Jia X.-H., L. Feng, Y.-Z. Liu, & L.-Q. Zhang, 2018, Degradation behaviors and genetic toxicity variations of pyrazolone pharmaceuticals during chlorine dioxide disinfection process. Chem. Eng. J. 345: 156–164. https://doi.org/10.1016/j.cej.2018.03.129

Kanama K.M., A.P. Daso, L. Mpenyana-Monyatsi, & M.A.A. Coetzee, 2018, Assessment of Pharmaceuticals, Personal Care Products, and Hormones in Wastewater Treatment Plants Receiving Inflows from Health Facilities in North West Province, South Africa. J. Toxicol. (2018), 3751930. https://doi.org/10.1155/2018/3751930

Khan, A.H. Khan, P. Tiwari, M. Zubair, & M. Naushad, 2021, New insights into the integrated application of Fenton-based oxidation processes for the treatment of pharmaceutical wastewater. J. Water Process Eng. 44, 102440. https://doi.org/10.1016/j.jwpe.2021.102440

Khan, A.H. Khan, S. Ahmed, I.H. Farooqi, S.S. Alam, I. Ali, A. Bokhari, & M. Mubashir, 2022a, Efficient removal of ibuprofen and ofloxacin pharmaceuticals using biofilm reactors for hospital wastewater treatment. Chemosphere 298, 134243. https://doi.org/10.1016/j.chemosphere.2022.134243

Khan, N.A. Khan, M. Zubair, M. Azfar Shaida, M.S. Manzar, A. Abutaleb, M. Naushad, & J. Iqbal, 2022b, Sustainable green nanoadsorbents for remediation of pharmaceuticals from water and wastewater: A critical review. Environ. Res. 204, 112243. https://doi.org/10.1016/j.envres.2021.112243

Khan A.H., N.A. Khan, S. Ahmed, A. Dhingra, C.P. Singh, S.U. Khan, A.A. Mohammadi, F. Changani, M. Yousefi, S. Alam, S. Vambol, V. Vambol, A. Khursheed, & I. Ali, 2020, Application of advanced oxidation processes followed by different treatment technologies for hospital wastewater treatment. J. Clean. Prod. 269, 122411. https://doi.org/10.1016/j.jclepro.2020.122411

Kleywegt S., S.-A. Smyth, J. Parrott, K. Schaefer, E. Lagacé, M. Payne, E. Topp, A. Beck, A. McLaughlin, & K. Ostapyk, 2007, Pharmaceuticals and Personal Care Products in the Canadian Environment: Research and Policy Directions. NWRI Scientific Assessment Report Series No.8. 53 p., Minist. Public Work. Gov. Serv. Canada.

Kondor A.C., É. Molnár, A. Vancsik, T. Filep, J. Szeberényi, L. Szabó, G. Maász, Z. Pirger, A. Weiperth, Á. Ferincz, Á. Staszny, P. Dobosy, K. Horváthné Kiss, G. Jakab, & Z. Szalai, 2021, Occurrence and health risk assessment of pharmaceutically active compounds in riverbank filtrated drinking water. J. Water Process Eng. 41, 102039. https://doi.org/https://doi.org/10.1016/j.jwpe.2021.102039

Kookana R.S., M. Williams, A.B.A. Boxall, D.G.J. Larsson, S. Gaw, K. Choi, H. Yamamoto, S. Thatikonda, Y.-G. Zhu, & P. Carriquiriborde, 2014, Potential ecological footprints of active pharmaceutical ingredients: an examination of risk factors in low-, middle- and high-income countries. Philos. Trans. R. Soc. B Biol. Sci. 369, 20130586. https://doi.org/10.1098/rstb.2013.0586

Lapworth D.J., N. Baran, M.E. Stuart, & R.S. Ward, 2012, Emerging organic contaminants in groundwater: A review of sources, fate and occurrence. Environ. Pollut. 163: 287–303. https://doi.org/10.1016/j.envpol.2011.12.034

Leung W.H., J. Ling, W. Si, T.M.M. Po, Z. Bingsheng, J. Liping, C.P. Chuen, C.Y. Kan, M.M. Burkhardt, & L.P.K. Sing, 2013, Pharmaceuticals in Tap Water: Human Health Risk Assessment and Proposed Monitoring Framework in China. Environ. Health Perspect. 121(7): 839–846. https://doi.org/10.1289/ehp.1206244

Lunghi C., M.R. Valetto, A.B. Caracciolo, I. Bramke, S. Caroli, P. Bottoni, S. Castiglioni, S. Crisafulli, L. Cuzzolin, P. Deambrosis, V. Giunchi, J. Grisotto, A. Marcomini, U. Moretti, V. Murgia, J. Pandit, S. Polesello, E. Poluzzi, R. Romizi, N. Scarpa, G. Scroccaro, R. Sorrentino, A. Sundström, J. Wilkinson, & G. Paolone, 2025, Call to action: Pharmaceutical residues in the environment: threats to ecosystems and human health. Drug Saf. 48: 315–320. https://doi.org/10.1007/s40264-024-01497-3

Manaia C.M., J. Rocha, N. Scaccia, R. Marano, E. Radu, F. Biancullo, F. Cerqueira, G. Fortunato, I.C. Iakovides, I. Zammit, I. Kampouris, I. Vaz-Moreira, & O.C. Nunes, 2018, Antibiotic resistance in wastewater treatment plants: Tackling the black box. Environ. Int. 115: 312–324. https://doi.org/10.1016/j.envint.2018.03.044

McDougall L., L. Thomson, S. Brand, A. Wagstaff, L.A. Lawton, & B. Petrie, 2022, Adsorption of a diverse range of pharmaceuticals to polyethylene microplastics in wastewater and their desorption in environmental matrices. Sci. Total Environ. 808, 152071. https://doi.org/10.1016/j.scitotenv.2021.152071

Miarov O., A. Tal, & D. Avisar, 2020, A critical evaluation of comparative regulatory strategies for monitoring pharmaceuticals in recycled wastewater, J. Environ. Manage. 254, 109794. https://doi.org/10.1016/j.jenvman.2019.109794

Mosharaf, M.K., Gomes, R.L., Cook, S., Alam, M.S., Rasmusssen, A., 2024. Wastewater reuse and pharmaceutical pollution in agriculture: Uptake, transport, accumulation and metabolism of pharmaceutical pollutants within plants. Chemosphere 364, 143055. https://doi.org/10.1016/j.chemosphere.2024.143055

Nantaba F., W.-U. Palm, J. Wasswa, H. Bouwman, H. Kylin, & K. Kümmerer, 2021, Temporal dynamics and ecotoxicological risk assessment of personal care products, phthalate ester plasticizers, and organophosphorus flame retardants in water from Lake Victoria, Uganda. Chemosphere 262, 127716. https://doi.org/10.1016/j.chemosphere.2020.127716

NWQMS, 2006, Australian Guidelines for Water Recycling: Managing Health and Environmental Risks (Phase 1). Natural Resource Ministerial Management Council (NRMMC), Environment Protection and Heritage Council (EPHC), Australian Health Ministers’ Conference (AHMC).

NWQMS, 2008, Australian Guidelines for Water Recycling: Managing Health and Environmental Risks (Phase 2). Augmentation of Drinking Water Supplies. Natural Resource Ministerial Management Council (NRMMC), Environment Protection and Heritage Council (EPHC).

OECD, 2019, Pharmaceutical Residues in Freshwater Hazards and Policy Responses. https://doi.org/10.1787/c936f42d-en

Pan M., & L.M. Chu, 2018, Occurrence of antibiotics and antibiotic resistance genes in soils from wastewater irrigation areas in the Pearl River Delta region, southern China. Sci. Total Environ. 624: 145–152. https://doi.org/10.1016/j.scitotenv.2017.12.008

Patel M., R. Kumar, K. Kishor, T. Mlsna, C.U. Pittman, & D. Mohan, 2019, Pharmaceuticals of emerging concern in aquatic systems: Chemistry, occurrence, effects, and removal methods. Chem. Rev. 119: 3510–3673. https://doi.org/10.1021/acs.chemrev.8b00299

Pereira A., L. Silva, C. Laranjeiro, C. Lino, & A. Pena, 2020, Selected Pharmaceuticals in Different Aquatic Compartments: Part II—Toxicity and Environmental Risk Assessment. Molecules 25, 1796. https://doi.org/10.3390/molecules25081796

Petrie B., R. Barden, & B. Kasprzyk-Hordern, 2015, A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring. Water Res. 72: 3–27. https://doi.org/10.1016/j.watres.2014.08.053

Phillips P.J., C. Schubert, D. Argue, I. Fisher, E.T. Furlong, W. Foreman, J. Gray, & A. Chalmers, 2015, Concentrations of hormones, pharmaceuticals and other micropollutants in groundwater affected by septic systems in New England and New York, Sci. Total Environ. 512–513: 43–54. https://doi.org/10.1016/j.scitotenv.2014.12.067

Pojana G., A. Gomiero, N. Jonkers, & A. Marcomini, 2007, Natural and synthetic endocrine disrupting compounds (EDCs) in water, sediment and biota of a coastal lagoon. Environ. Int. 33: 929–936. https://doi.org/10.1016/j.envint.2007.05.003

Ramírez-Morales D., M. Masís-Mora, W. Beita-Sandí, J.R. Montiel-Mora, E. Fernández-Fernández, M. Méndez-Rivera, V. Arias-Mora, A. Leiva-Salas, L. Brenes-Alfaro, & C.E. Rodríguez-Rodríguez, 2021, Pharmaceuticals in farms and surrounding surface water bodies: Hazard and ecotoxicity in a swine production area in Costa Rica. Chemosphere 272, 129574. https://doi.org/10.1016/j.chemosphere.2021.129574

Santos A.V., C.F. Couto, Y.A.R. Lebron, V.R. Moreira, A.F.S. Foureaux, E.O. Reis, L.V. de S. Santos, L.H. de Andrade, M.C.S. Amaral, & L.C. Lange, 2020, Occurrence and risk assessment of pharmaceutically active compounds in water supply systems in Brazil. Sci. Total Environ. 746, 141011. https://doi.org/10.1016/j.scitotenv.2020.141011

Singh S., T.S.S.K. Naik, N. Shehata, L. Aguilar-Marcelino, K. Dhokne, S. Lonare, V. Chauhan, A. Kumar, J. Singh, P.C. Ramamurthy, A.H. Khan, N.A. Khan, M.H. Dehghani, 2023, Novel insights into graphene oxide-based adsorbents for remediation of hazardous pollutants from aqueous solutions: A comprehensive review. J. Mol. Liq. 369, 120821. https://doi.org/10.1016/j.molliq.2022.120821

Snyder S.A., S. Adham, A.M. Redding, F.S. Cannon, J. DeCarolis, J. Oppenheimer, E.C. Wert, & Y. Yoon, 2007, Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals. Desalination 202(1-3): 156–181. https://doi.org/10.1016/j.desal.2005.12.052

SR, 2016, Swiss Regulation of DETEC to Verify the Elimination Effect of Measures of Trace Organic Matter in Sewage Treatment Plants. Retrieved 06 March, 2022 from https://www.admin.ch/opc/de/official-compilation/2016%0A/4049.pdf (in German), Fedlex. https://www.admin.ch/opc/de/official-compilation/2016%0A/4049.pdf (in German).

Tahrani L., J. Van Loco, R. Anthonissen, L. Verschaeve, H. Ben Mansour, & T. Reyns, 2017, Identification and risk assessment of human and veterinary antibiotics in the wastewater treatment plants and the adjacent sea in Tunisia. Water Sci. Technol. 76: 3000–3021. https://doi.org/10.2166/wst.2017.465

Tannoury M., & Z. Attieh, 2017, The Influence of Emerging Markets on the Pharmaceutical Industry. Curr. Ther. Res. 86: 19–22. https://doi.org/10.1016/j.curtheres.2017.04.005

UBA, 2015, Pharmaceuticals in the environment – avoidance, reduction and monitoring. http://www.umweltbundesamt.de/background-pharmaceuticals-in-the-environment

Verlicchi P., 2021, Trends, new insights and perspectives in the treatment of hospital effluents. Curr. Opin. Environ. Sci. Heal. 19, 100217. https://doi.org/10.1016/j.coesh.2020.10.005

Verlicchi P., M. Al Aukidy, E. Zambello, 2012, Occurrence of pharmaceutical compounds in urban wastewater: Removal, mass load and environmental risk after a secondary treatment—A review. Sci. Total Environ. 429: 123–155. https://doi.org/10.1016/j.scitotenv.2012.04.028

Verlicchi P., M. Al Aukidy, & E. Zambello, 2015, What have we learned from worldwide experiences on the management and treatment of hospital effluent? - An overview and a discussion on perspectives. Sci. Total Environ. 514: 467–491. https://doi.org/10.1016/j.scitotenv.2015.02.020

Verlicchi P., A. Galletti, M. Petrovic, D. Barceló, 2010, Hospital effluents as a source of emerging pollutants: An overview of micropollutants and sustainable treatment options. J. Hydrol. 389: 416–428. https://doi.org/10.1016/j.jhydrol.2010.06.005

WHO, 2003, Quantifying public health risks in the WHO Guidelines for Drinking-water quality. Directorate General for Environmental Protection, Directorate for Soil, Water and Countryside within the framework of project 734301, Standards and Enforcement of Drinking W, 2003. https://cdn.who.int/media/docs/default-source/wash-documents/quantifying-public-health-risks-in gdwq.pdf?sfvrsn=e6c36bfb_4&download=true.

WHO, 2004, Guidelines for Drinking-water Quality FOURTH EDITION. https://apps.who.int/iris/bitstream/handle/10665/44584/9789241548151_eng.pdf;jsessionid=046458C170EA33FC65B095C5C2FDA7F3?sequence=1

WHO, 2011, Pharmaceuticals in Drinking-water. WHO/HSE/WSH/11.05. https://apps.who.int/iris/bitstream/10665/44630/1/9789241502085_eng.pdf

WHO, 2017, Guidelines for drinking-water quality: fourth edition incorporating the first addendum. Fourth, WHO, Geneva.

Wiest L., T. Chonova, A. Bergé, R. Baudot, F. Bessueille-Barbier, L. Ayouni-Derouiche, & E. Vulliet, 2018, Two-year survey of specific hospital wastewater treatment and its impact on pharmaceutical discharges. Environ. Sci. Pollut. Res. 25: 9207–9218. https://doi.org/10.1007/s11356-017-9662-5

Wilkinson W.J., A.B.A. Boxall, D.W. Kolpin, & Ch. Teta, 2022, Pharmaceutical pollution of the world’s rivers. Proc. Natl. Acad. Sci. 119(8), e2113947119. https://doi.org/10.1073/pnas.2113947119

Zhang Q.-Q., G.-G. Ying, C.-G. Pan, Y.-S. Liu, &J.-L. Zhao, 2015, Comprehensive Evaluation of Antibiotics Emission and Fate in the River Basins of China: Source Analysis, Multimedia Modeling, and Linkage to Bacterial Resistance. Environ. Sci. Technol. 49: 6772–6782. https://doi.org/10.1021/acs.est.5b00729

Zhang S., S. Gitungo, J.E. Dyksen, R.F. Raczko, & L. Axe, 2021, Indicator Compounds Representative of Contaminants of Emerging Concern (CECs) Found in the Water Cycle in the United States. Int. J. Environ. Res. Public Health 18. https://doi.org/10.3390/ijerph18031288

Downloads

  • pdf

Published

2025-11-24

How to Cite

1.
KHAN, Afzal Husain. Regulations and treatment strategies for pharmaceutical wastewater - A review. Ecological Questions. Online. 24 November 2025. Vol. 36, no. 4, pp. 1-20. [Accessed 8 December 2025]. DOI 10.12775/EQ.2025.039.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 36 No. 4 (2025): Forthcoming

Section

Articles

License

Copyright (c) 2025 Afzal Husain Khan

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 110
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

Aquatic environment, Emerging contaminants, Hospital Wastewater, Regulation, Public Health
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop