Regulations and treatment strategies for pharmaceutical wastewater - A review
DOI:
https://doi.org/10.12775/EQ.2025.039Keywords
Aquatic environment, Emerging contaminants, Hospital Wastewater, Regulation, Public HealthAbstract
Pharmaceutical residues are recognized as emerging micropollutants that are predominantly present in the environment, mainly due to direct discharge or inefficiently treated effluents from wastewater treatment plants. Although conventional treatment partially removes pharmaceuticals (less than 50% for most pharmaceutical compounds), it is incapable of completely eliminating pharmaceuticals from wastewater due to the complexity of the compounds and inappropriate operational conditions. However, advanced treatment technology demonstrated a removal rate of over 90%, but cost and energy requirements are considered important aspects. Additionally, a legal and regulatory framework needs to be implemented to control the discharge of pharmaceuticals. Herein, a comprehensive review of global consumption and pathways, as well as guidelines for the efficient removal of pharmaceuticals. Additionally, we examine current developments regarding strict guidelines and policies imposed by various regions aimed at controlling pharmaceutical residues. Finally, we discuss the future outlook for developing new approaches and innovative treatment technologies to reduce pharmaceutical residues in the environment.
References
Achak M., S. Alaoui Bakri, Y. Chhiti, F.E. M’hamdi Alaoui, N. Barka, & W. Boumya, 2021, SARS-CoV-2 in hospital wastewater during outbreak of COVID-19: A review on detection, survival and disinfection technologies. Sci. Total Environ. 761, 143192. https://doi.org/10.1016/j.scitotenv.2020.143192
Aydın S., A. Ulvi, F. Bedük, & M.E. Aydın, 2022, Pharmaceutical residues in digested sewage sludge: Occurrence, seasonal variation and risk assessment for soil, Sci. Total Environ. 817, 152864. https://doi.org/10.1016/j.scitotenv.2021.152864
Ayres I., & J. Braithwaite, 1992, Responsive Regulation: Transcending the Deregulation Debate. OXFORD UNIVERSITY PRESS. http://johnbraithwaite.com/wp-content/uploads/2016/06/Responsive-Regulation-Transce.pdf
aus der Beek T., F.A. Weber, A. Bergmann, S. Hickmann, I. Ebert, A. Hein, & A. Küster, 2016, Pharmaceuticals in the environment-Global occurrences and perspectives. Environ. Toxicol. Chem. 35: 823–835. https://doi.org/10.1002/etc.3339
Bennett K.A., S.D. Kelly, X. Tang, & B.J. Reid, 2017, Potential for natural and enhanced attenuation of sulphanilamide in a contaminated chalk aquifer. J. Environ. Sci. 62: 39–48. https://doi.org/10.1016/j.jes.2017.08.010
BIO Intelligence Service, 2013, Study on the environmental risks of medicinal products, Final Report prepared for Executive Agency for Health and Consumers. BIO Intelligence Service, Paris.
Branchet P., N. Ariza Castro, H. Fenet, E. Gomez, F. Courant, D. Sebag, J. Gardon, C. Jourdan, B. Ngounou Ngatcha, I. Kengne, E. Cadot, & C. Gonzalez, 2019, Anthropic impacts on Sub-Saharan urban water resources through their pharmaceutical contamination (Yaoundé, Center Region, Cameroon). Sci. Total Environ. 660: 886–898. https://doi.org/10.1016/j.scitotenv.2018.12.256
Carraro E., S. Bonetta, & S. Bonetta, 2018, Hospital wastewater: Existing regulations and current trends in management. Handb. Environ. Chem. 60: 1–16. https://doi.org/10.1007/698_2017_10
Carter L.J., B. Chefetz, Z. Abdeen, & A.B.A. Boxall, 2019, Emerging investigator series: towards a framework for establishing the impacts of pharmaceuticals in wastewater irrigation systems on agro-ecosystems and human health. Environ. Sci. Process. Impacts 21: 605–622. https://doi.org/10.1039/C9EM00020H
Diwan V., A.J. Tamhankar, M. Aggarwal, S. Sen, R.K. Khandal, & C.S. Lundborg, 2009, Detection of antibiotics in hospital effluents in India. Curr. Sci. 97: 1752–1755. http://www.jstor.org/stable/24107255
Dolar D., S. Pelko, K. Košutić, & A.J.M. Horvat, 2012, Removal of anthelmintic drugs and their photodegradation products from water with RO/NF membranes. Process Saf. Environ. Prot. 90: 147–152. https://doi.org/10.1016/j.psep.2011.08.007
dos Santos C.R., G.S. Arcanjo, L.V. de Souza Santos, K. Koch, & M.C.S. Amaral, 2021, Aquatic concentration and risk assessment of pharmaceutically active compounds in the environment. Environ. Pollut. 290, 118049. https://doi.org/10.1016/j.envpol.2021.118049
Ebele A.J., T. Oluseyi, D.S. Drage, S. Harrad, & M. Abou-Elwafa Abdallah, 2020, Occurrence, seasonal variation and human exposure to pharmaceuticals and personal care products in surface water, groundwater and drinking water in Lagos State, Nigeria. Emerg. Contam. 6: 124–132. https://doi.org/10.1016/j.emcon.2020.02.004
EC, 2020, Establishing a watch list of substances for Union-wide monitoring in the field of water policy pursuant to Directive 2008/105/EC of the European Parliament and of the Council. Off. J. Eur. Union 63: 1–4.
EEA, 2010, Pharmaceuticals in the environment: results of an EEA workshop. Copenhagen, European Environment Agency (EEA Technical Report No. 1).
Elias P.S., 1973, Environmental Poisons. Nature 245, 431. https://doi.org/10.1038/245431a0.
El-Shafey E.-S.I., H. Al-Lawati, & A.S. Al-Sumri, 2012, Ciprofloxacin adsorption from aqueous solution onto chemically prepared carbon from date palm leaflets. J. Environ. Sci. 24: 1579–1586. https://doi.org/10.1016/S1001-0742(11)60949-2
Emmanuel E., M.G. Pierre, & Y. Perrodin, 2009, Groundwater contamination by microbiological and chemical substances released from hospital wastewater: Health risk assessment for drinking water consumers. Environ. Int. 35: 718–726. https://doi.org/https://doi.org/10.1016/j.envint.2009.01.011
EPA, 1995, National Pollutant Discharge Elimination System and Pretreatment Programs; State and Local Assistance Programs; Effluent Limitations Guidelines and Standards; Public Water Supply and Underground Injection Control Programs: Removal of Legally Obsolete or R.
EPA, 2003, Part III: Environmental Protection Agency 40 CFR 439: Effluent Limitations Guidelines, Pre-treatment Standards, and New Source Performance Standards for the Pharmaceutical Manufacturing Point Source Category; Direct Final Rule and Proposed Rule. https://www.govinfo.gov/content/pkg/FR-2003-03-13/pdf/03-5716.pdf
EPA, 2006, Permit Guidance Document: Pharmaceutical Manufacturing Point Source Category (40 CFR Part 439). https://www.epa.gov/sites/default/files/2015-10/documents/pharmaceutical-permit-guidance_2006.pdf
EPA, 2010, Guidance document: Best management practices for unused pharmaceuticals at health care facilities. Draft. Washington, DC, United States Environmental Protection Agency (EPA-821-R-10-006). http://water.epa.gov/scitech/wastetech/guide/upload/%0Aunuseddraft.pdf)
EU, 2007, Registration, evaluation, authorization and restriction of chemicals. establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as well as Council Dir.
FDA, 2021, Fact Sheet: FDA at a Glance, US Food Drug Adm. https://www.fda.gov/about-fda/fda-basics/fact-sheet-fda-glance.
Fent K., A.A. Weston, & D. Caminada, 2006, Ecotoxicology of human pharmaceuticals. Aquat. Toxicol. 76: 122–159. https://doi.org/10.1016/j.aquatox.2005.09.009
FOEN, 2015, Federal Office for the Environment, Switzerland, 2015, Environment Switzerland 2015, Water Quality Report. Retrieved 09 November 2017 from. https://www.bafu. admin.ch/dam/bafu/.../water_environmentswitzerland2015.pdf, Fedlex.
Gagnon Edith, 2009, Pharmaceutical Disposal Programs for the Public: A Canadian Perspective. Health Canada Environmental Impact Initiative. https://cdn.ymaws.com/www.productstewardship.us/resource/resmgr/imported/Takeback%20%282%29.pdf, Heal. Canada. https://publications.gc.ca/collections/collection_2008/ec/En13-2-8-2007E.pdf
Ghosh S., O. Falyouna, H. Onyeaka, A. Malloum, C. Bornman, S.S. Al Kafaas, Z.T. Al-Sharify, S. Ahmadi, M.H. Dehghani, A.H. Mahvi, S. Nasseri, I. Tyagi, M. Mousazadeh, J.R. Koduru, & A.H. Khan, Suhas, 2023, Recent progress on the remediation of metronidazole antibiotic as emerging contaminant from water environments using sustainable adsorbents: A review. J. Water Process Eng. 51, 103405. https://doi.org/10.1016/j.jwpe.2022.103405
Hanna N., P. Sun, Q. Sun, X. Li, X. Yang, X. Ji, H. Zou, J. Ottoson, L.E. Nilsson, B. Berglund, O.J. Dyar, A.J. Tamhankar, & C. Stålsby Lundborg, 2018, Presence of antibiotic residues in various environmental compartments of Shandong province in eastern China: Its potential for resistance development and ecological and human risk. Environ. Int. 114: 131–142. https://doi.org/10.1016/j.envint.2018.02.003
Hocaoglu S.M., M.D. Celebi, I. Basturk, & R. Partal, 2021, Treatment-based hospital wastewater characterization and fractionation of pollutants. J. Water Process Eng. 43, 102205. https://doi.org/10.1016/j.jwpe.2021.102205
Jia X.-H., L. Feng, Y.-Z. Liu, & L.-Q. Zhang, 2018, Degradation behaviors and genetic toxicity variations of pyrazolone pharmaceuticals during chlorine dioxide disinfection process. Chem. Eng. J. 345: 156–164. https://doi.org/10.1016/j.cej.2018.03.129
Kanama K.M., A.P. Daso, L. Mpenyana-Monyatsi, & M.A.A. Coetzee, 2018, Assessment of Pharmaceuticals, Personal Care Products, and Hormones in Wastewater Treatment Plants Receiving Inflows from Health Facilities in North West Province, South Africa. J. Toxicol. (2018), 3751930. https://doi.org/10.1155/2018/3751930
Khan, A.H. Khan, P. Tiwari, M. Zubair, & M. Naushad, 2021, New insights into the integrated application of Fenton-based oxidation processes for the treatment of pharmaceutical wastewater. J. Water Process Eng. 44, 102440. https://doi.org/10.1016/j.jwpe.2021.102440
Khan, A.H. Khan, S. Ahmed, I.H. Farooqi, S.S. Alam, I. Ali, A. Bokhari, & M. Mubashir, 2022a, Efficient removal of ibuprofen and ofloxacin pharmaceuticals using biofilm reactors for hospital wastewater treatment. Chemosphere 298, 134243. https://doi.org/10.1016/j.chemosphere.2022.134243
Khan, N.A. Khan, M. Zubair, M. Azfar Shaida, M.S. Manzar, A. Abutaleb, M. Naushad, & J. Iqbal, 2022b, Sustainable green nanoadsorbents for remediation of pharmaceuticals from water and wastewater: A critical review. Environ. Res. 204, 112243. https://doi.org/10.1016/j.envres.2021.112243
Khan A.H., N.A. Khan, S. Ahmed, A. Dhingra, C.P. Singh, S.U. Khan, A.A. Mohammadi, F. Changani, M. Yousefi, S. Alam, S. Vambol, V. Vambol, A. Khursheed, & I. Ali, 2020, Application of advanced oxidation processes followed by different treatment technologies for hospital wastewater treatment. J. Clean. Prod. 269, 122411. https://doi.org/10.1016/j.jclepro.2020.122411
Kleywegt S., S.-A. Smyth, J. Parrott, K. Schaefer, E. Lagacé, M. Payne, E. Topp, A. Beck, A. McLaughlin, & K. Ostapyk, 2007, Pharmaceuticals and Personal Care Products in the Canadian Environment: Research and Policy Directions. NWRI Scientific Assessment Report Series No.8. 53 p., Minist. Public Work. Gov. Serv. Canada.
Kondor A.C., É. Molnár, A. Vancsik, T. Filep, J. Szeberényi, L. Szabó, G. Maász, Z. Pirger, A. Weiperth, Á. Ferincz, Á. Staszny, P. Dobosy, K. Horváthné Kiss, G. Jakab, & Z. Szalai, 2021, Occurrence and health risk assessment of pharmaceutically active compounds in riverbank filtrated drinking water. J. Water Process Eng. 41, 102039. https://doi.org/https://doi.org/10.1016/j.jwpe.2021.102039
Kookana R.S., M. Williams, A.B.A. Boxall, D.G.J. Larsson, S. Gaw, K. Choi, H. Yamamoto, S. Thatikonda, Y.-G. Zhu, & P. Carriquiriborde, 2014, Potential ecological footprints of active pharmaceutical ingredients: an examination of risk factors in low-, middle- and high-income countries. Philos. Trans. R. Soc. B Biol. Sci. 369, 20130586. https://doi.org/10.1098/rstb.2013.0586
Lapworth D.J., N. Baran, M.E. Stuart, & R.S. Ward, 2012, Emerging organic contaminants in groundwater: A review of sources, fate and occurrence. Environ. Pollut. 163: 287–303. https://doi.org/10.1016/j.envpol.2011.12.034
Leung W.H., J. Ling, W. Si, T.M.M. Po, Z. Bingsheng, J. Liping, C.P. Chuen, C.Y. Kan, M.M. Burkhardt, & L.P.K. Sing, 2013, Pharmaceuticals in Tap Water: Human Health Risk Assessment and Proposed Monitoring Framework in China. Environ. Health Perspect. 121(7): 839–846. https://doi.org/10.1289/ehp.1206244
Lunghi C., M.R. Valetto, A.B. Caracciolo, I. Bramke, S. Caroli, P. Bottoni, S. Castiglioni, S. Crisafulli, L. Cuzzolin, P. Deambrosis, V. Giunchi, J. Grisotto, A. Marcomini, U. Moretti, V. Murgia, J. Pandit, S. Polesello, E. Poluzzi, R. Romizi, N. Scarpa, G. Scroccaro, R. Sorrentino, A. Sundström, J. Wilkinson, & G. Paolone, 2025, Call to action: Pharmaceutical residues in the environment: threats to ecosystems and human health. Drug Saf. 48: 315–320. https://doi.org/10.1007/s40264-024-01497-3
Manaia C.M., J. Rocha, N. Scaccia, R. Marano, E. Radu, F. Biancullo, F. Cerqueira, G. Fortunato, I.C. Iakovides, I. Zammit, I. Kampouris, I. Vaz-Moreira, & O.C. Nunes, 2018, Antibiotic resistance in wastewater treatment plants: Tackling the black box. Environ. Int. 115: 312–324. https://doi.org/10.1016/j.envint.2018.03.044
McDougall L., L. Thomson, S. Brand, A. Wagstaff, L.A. Lawton, & B. Petrie, 2022, Adsorption of a diverse range of pharmaceuticals to polyethylene microplastics in wastewater and their desorption in environmental matrices. Sci. Total Environ. 808, 152071. https://doi.org/10.1016/j.scitotenv.2021.152071
Miarov O., A. Tal, & D. Avisar, 2020, A critical evaluation of comparative regulatory strategies for monitoring pharmaceuticals in recycled wastewater, J. Environ. Manage. 254, 109794. https://doi.org/10.1016/j.jenvman.2019.109794
Mosharaf, M.K., Gomes, R.L., Cook, S., Alam, M.S., Rasmusssen, A., 2024. Wastewater reuse and pharmaceutical pollution in agriculture: Uptake, transport, accumulation and metabolism of pharmaceutical pollutants within plants. Chemosphere 364, 143055. https://doi.org/10.1016/j.chemosphere.2024.143055
Nantaba F., W.-U. Palm, J. Wasswa, H. Bouwman, H. Kylin, & K. Kümmerer, 2021, Temporal dynamics and ecotoxicological risk assessment of personal care products, phthalate ester plasticizers, and organophosphorus flame retardants in water from Lake Victoria, Uganda. Chemosphere 262, 127716. https://doi.org/10.1016/j.chemosphere.2020.127716
NWQMS, 2006, Australian Guidelines for Water Recycling: Managing Health and Environmental Risks (Phase 1). Natural Resource Ministerial Management Council (NRMMC), Environment Protection and Heritage Council (EPHC), Australian Health Ministers’ Conference (AHMC).
NWQMS, 2008, Australian Guidelines for Water Recycling: Managing Health and Environmental Risks (Phase 2). Augmentation of Drinking Water Supplies. Natural Resource Ministerial Management Council (NRMMC), Environment Protection and Heritage Council (EPHC).
OECD, 2019, Pharmaceutical Residues in Freshwater Hazards and Policy Responses. https://doi.org/10.1787/c936f42d-en
Pan M., & L.M. Chu, 2018, Occurrence of antibiotics and antibiotic resistance genes in soils from wastewater irrigation areas in the Pearl River Delta region, southern China. Sci. Total Environ. 624: 145–152. https://doi.org/10.1016/j.scitotenv.2017.12.008
Patel M., R. Kumar, K. Kishor, T. Mlsna, C.U. Pittman, & D. Mohan, 2019, Pharmaceuticals of emerging concern in aquatic systems: Chemistry, occurrence, effects, and removal methods. Chem. Rev. 119: 3510–3673. https://doi.org/10.1021/acs.chemrev.8b00299
Pereira A., L. Silva, C. Laranjeiro, C. Lino, & A. Pena, 2020, Selected Pharmaceuticals in Different Aquatic Compartments: Part II—Toxicity and Environmental Risk Assessment. Molecules 25, 1796. https://doi.org/10.3390/molecules25081796
Petrie B., R. Barden, & B. Kasprzyk-Hordern, 2015, A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring. Water Res. 72: 3–27. https://doi.org/10.1016/j.watres.2014.08.053
Phillips P.J., C. Schubert, D. Argue, I. Fisher, E.T. Furlong, W. Foreman, J. Gray, & A. Chalmers, 2015, Concentrations of hormones, pharmaceuticals and other micropollutants in groundwater affected by septic systems in New England and New York, Sci. Total Environ. 512–513: 43–54. https://doi.org/10.1016/j.scitotenv.2014.12.067
Pojana G., A. Gomiero, N. Jonkers, & A. Marcomini, 2007, Natural and synthetic endocrine disrupting compounds (EDCs) in water, sediment and biota of a coastal lagoon. Environ. Int. 33: 929–936. https://doi.org/10.1016/j.envint.2007.05.003
Ramírez-Morales D., M. Masís-Mora, W. Beita-Sandí, J.R. Montiel-Mora, E. Fernández-Fernández, M. Méndez-Rivera, V. Arias-Mora, A. Leiva-Salas, L. Brenes-Alfaro, & C.E. Rodríguez-Rodríguez, 2021, Pharmaceuticals in farms and surrounding surface water bodies: Hazard and ecotoxicity in a swine production area in Costa Rica. Chemosphere 272, 129574. https://doi.org/10.1016/j.chemosphere.2021.129574
Santos A.V., C.F. Couto, Y.A.R. Lebron, V.R. Moreira, A.F.S. Foureaux, E.O. Reis, L.V. de S. Santos, L.H. de Andrade, M.C.S. Amaral, & L.C. Lange, 2020, Occurrence and risk assessment of pharmaceutically active compounds in water supply systems in Brazil. Sci. Total Environ. 746, 141011. https://doi.org/10.1016/j.scitotenv.2020.141011
Singh S., T.S.S.K. Naik, N. Shehata, L. Aguilar-Marcelino, K. Dhokne, S. Lonare, V. Chauhan, A. Kumar, J. Singh, P.C. Ramamurthy, A.H. Khan, N.A. Khan, M.H. Dehghani, 2023, Novel insights into graphene oxide-based adsorbents for remediation of hazardous pollutants from aqueous solutions: A comprehensive review. J. Mol. Liq. 369, 120821. https://doi.org/10.1016/j.molliq.2022.120821
Snyder S.A., S. Adham, A.M. Redding, F.S. Cannon, J. DeCarolis, J. Oppenheimer, E.C. Wert, & Y. Yoon, 2007, Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals. Desalination 202(1-3): 156–181. https://doi.org/10.1016/j.desal.2005.12.052
SR, 2016, Swiss Regulation of DETEC to Verify the Elimination Effect of Measures of Trace Organic Matter in Sewage Treatment Plants. Retrieved 06 March, 2022 from https://www.admin.ch/opc/de/official-compilation/2016%0A/4049.pdf (in German), Fedlex. https://www.admin.ch/opc/de/official-compilation/2016%0A/4049.pdf (in German).
Tahrani L., J. Van Loco, R. Anthonissen, L. Verschaeve, H. Ben Mansour, & T. Reyns, 2017, Identification and risk assessment of human and veterinary antibiotics in the wastewater treatment plants and the adjacent sea in Tunisia. Water Sci. Technol. 76: 3000–3021. https://doi.org/10.2166/wst.2017.465
Tannoury M., & Z. Attieh, 2017, The Influence of Emerging Markets on the Pharmaceutical Industry. Curr. Ther. Res. 86: 19–22. https://doi.org/10.1016/j.curtheres.2017.04.005
UBA, 2015, Pharmaceuticals in the environment – avoidance, reduction and monitoring. http://www.umweltbundesamt.de/background-pharmaceuticals-in-the-environment
Verlicchi P., 2021, Trends, new insights and perspectives in the treatment of hospital effluents. Curr. Opin. Environ. Sci. Heal. 19, 100217. https://doi.org/10.1016/j.coesh.2020.10.005
Verlicchi P., M. Al Aukidy, E. Zambello, 2012, Occurrence of pharmaceutical compounds in urban wastewater: Removal, mass load and environmental risk after a secondary treatment—A review. Sci. Total Environ. 429: 123–155. https://doi.org/10.1016/j.scitotenv.2012.04.028
Verlicchi P., M. Al Aukidy, & E. Zambello, 2015, What have we learned from worldwide experiences on the management and treatment of hospital effluent? - An overview and a discussion on perspectives. Sci. Total Environ. 514: 467–491. https://doi.org/10.1016/j.scitotenv.2015.02.020
Verlicchi P., A. Galletti, M. Petrovic, D. Barceló, 2010, Hospital effluents as a source of emerging pollutants: An overview of micropollutants and sustainable treatment options. J. Hydrol. 389: 416–428. https://doi.org/10.1016/j.jhydrol.2010.06.005
WHO, 2003, Quantifying public health risks in the WHO Guidelines for Drinking-water quality. Directorate General for Environmental Protection, Directorate for Soil, Water and Countryside within the framework of project 734301, Standards and Enforcement of Drinking W, 2003. https://cdn.who.int/media/docs/default-source/wash-documents/quantifying-public-health-risks-in gdwq.pdf?sfvrsn=e6c36bfb_4&download=true.
WHO, 2004, Guidelines for Drinking-water Quality FOURTH EDITION. https://apps.who.int/iris/bitstream/handle/10665/44584/9789241548151_eng.pdf;jsessionid=046458C170EA33FC65B095C5C2FDA7F3?sequence=1
WHO, 2011, Pharmaceuticals in Drinking-water. WHO/HSE/WSH/11.05. https://apps.who.int/iris/bitstream/10665/44630/1/9789241502085_eng.pdf
WHO, 2017, Guidelines for drinking-water quality: fourth edition incorporating the first addendum. Fourth, WHO, Geneva.
Wiest L., T. Chonova, A. Bergé, R. Baudot, F. Bessueille-Barbier, L. Ayouni-Derouiche, & E. Vulliet, 2018, Two-year survey of specific hospital wastewater treatment and its impact on pharmaceutical discharges. Environ. Sci. Pollut. Res. 25: 9207–9218. https://doi.org/10.1007/s11356-017-9662-5
Wilkinson W.J., A.B.A. Boxall, D.W. Kolpin, & Ch. Teta, 2022, Pharmaceutical pollution of the world’s rivers. Proc. Natl. Acad. Sci. 119(8), e2113947119. https://doi.org/10.1073/pnas.2113947119
Zhang Q.-Q., G.-G. Ying, C.-G. Pan, Y.-S. Liu, &J.-L. Zhao, 2015, Comprehensive Evaluation of Antibiotics Emission and Fate in the River Basins of China: Source Analysis, Multimedia Modeling, and Linkage to Bacterial Resistance. Environ. Sci. Technol. 49: 6772–6782. https://doi.org/10.1021/acs.est.5b00729
Zhang S., S. Gitungo, J.E. Dyksen, R.F. Raczko, & L. Axe, 2021, Indicator Compounds Representative of Contaminants of Emerging Concern (CECs) Found in the Water Cycle in the United States. Int. J. Environ. Res. Public Health 18. https://doi.org/10.3390/ijerph18031288
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Afzal Husain Khan

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 110
Number of citations: 0