A decade of Artificial Intelligence in water management: A systematic review of progress, applications, and challenges (2010-2025)
DOI:
https://doi.org/10.12775/EQ.2026.008Keywords
Artificial Intelligence, water resource management, water quality, systematic review, hydrologyAbstract
Sustainable water resource management is an increasingly urgent global challenge, where conventional methods are often inadequate. Artificial Intelligence (AI) has emerged as a transformative technology offering advanced solutions. This paper presents a systematic review of the progress, applications, and challenges of AI in water management during the period 2010–2025. Through a thematic analysis of relevant literature, we identify three distinct evolutionary stages: an early stage dominated by traditional machine learning (2010–2015), a deep learning revolution (2016–2020), and an era of Advanced AI Integration and Innovation featuring hybrid models and physics-aware machine learning (2021–2025). Key findings show that AI excels in various applications, particularly high-accuracy water quality prediction, real-time monitoring systems, process optimization, and predictive analytics for disaster mitigation. Despite its significant strengths in accuracy and data processing, major challenges remain, including data availability limitations, lack of model interpretability (“black box”), and generalization difficulties. This review concludes that future research directions, such as Explainable AI (XAI) and domain knowledge integration, are crucial to overcoming these barriers and realizing the full potential of AI in creating intelligent, efficient, and resilient water management systems.
References
Adebayo, A.I., K.T. Olubanjo, A.M. Fadeke, J.J. Uyanah, A.T. Zirra, A. Igbaoreto, & P.D. Fakoyede, 2025, From Static Sampling to Dynamic Insights: The Future of Water Quality Monitoring with Sensors, IoT, and Drones. Science World Journal, 20(1): 454–466. https://dx.doi.org/10.4314/swj.v20i1.61
Ahmed, A.N., F.B. Othman, H.A. Afan, R.K. Ibrahim, C.M. Fai, Md.S. Hossain, M. Ehteram, & A. Elshafie, 2019, Machine learning methods for better water quality prediction. J. Hydrol., 578(November): 124084. Elsevier Ltd. https://doi.org/10.1016/j.jhydrol.2019.124084
Al-Adhaileh, M.H., & F.W. Alsaade, 2021, Modelling and prediction of water quality by using artificial intelligence. Sustainability, 13(8): 4259. https://doi.org/10.3390/su13084259
Alharbi, A.H., F.H. Rizk, K.S. Gaber, M.M. Eid, E.S.M. El-Kenawy, E. Khodadadi, & N. Khodadadi, 2025, Hybrid deep learning optimization for smart agriculture: Dipper throated optimization and polar rose search applied to water quality prediction. PLoS One, 20(7 July): 1–43. https://doi.org/10.1371/journal.pone.0327230
Bo, L., L. Junrui, & L. Xuegang, 2025, Multi-dimensional water quality indicators forecasting from IoT sensors: A tensor decomposition and multi-head self-attention mechanism. PLoS One, 20 (7 July): e00326870. https://doi.org/10.1371/journal.pone.0326870
Chaiyana, A., A. Kumari, & S.V.K. Jagadish, 2025, Crop field segmentation and irrigation water source attribution for groundwater monitoring and projection toward conservation in the Texas High Plains. Sci. Total Environ. 994(June), 180031. Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2025.180031
Chellaiah, C., S. Anbalagan, D. Swaminathan, S. Chowdhury, T. Kadhila, A.K. Shopati, S. Shangdiar, B. Sharma, & K.T.T. Amesho, 2024, Integrating deep learning techniques for effective river water quality monitoring and management. J. Environ. Manage., 370 (September): 122477. Elsevier Ltd. https://doi.org/10.1016/j.jenvman.2024.122477
Danvirutai, P., S. Charoenwattanasak, S. Tola, K. Thaiso, B. Yuangsoi, H.T. Minh, & C. Srichan, 2025, An integrating RAG-LLM and deep Q-network framework for intelligent fish control systems. Sci. Rep., 15(1): 21377. https://doi.org/10.1038/s41598-025-05892-3
Dodig, A., E. Ricci, G. Kvascev, & M. Stojkovic, 2024, A novel machine learning-based framework for the water quality parameters prediction using hybrid long short-term memory and locally weighted scatterplot smoothing methods. J. Hydroinformatics, 26(5): 1059–1079. https://doi.org/10.2166/hydro.2024.273
Drogkoula, M., K. Kokkinos, & N. Samaras, 2023, A Comprehensive Survey of Machine Learning Methodologies with Emphasis in Water Resources Management. Appl. Sci., 13(22): 12147. https://doi.org/10.3390/app132212147
Durgun, Y., 2024, Real-time water quality monitoring using AI-enabled sensors: Detection of contaminants and UV disinfection analysis in smart urban water systems. J. King Saud Univ. - Sci., 36(9): 103409. Elsevier B.V. https://doi.org/10.1016/j.jksus.2024.103409
Fan, Y., R. Yu, J.R. Barclay, A.P. Appling, Y. Sun, Y. Xie, & X. Jia, 2025, Multi-scale graph learning for anti-sparse downscaling. Proc. Thirty-Ninth AAAI Conf. Artif. Intell. Thirty-Seventh Conf. Innov. Appl. Artif. Intell. Fifteenth Symp. Educ. Adv. Artif. Intell., AAAI’25/IAAI’25/EAAI’25. AAAI Press.
Gao, Z., G. Wang, Y. Zhu, J. Chen, L. Fang, S. Ren, J. Li, Y. A, W. Wang, & Q. Wang, 2025, Prediction of water quality parameters and pollution exceedance analysis in typical rivers of semi-arid regions based on interpretable deep learning models. Environ. Pollut., 383 (June): 126801. Elsevier Ltd. https://doi.org/10.1016/j.envpol.2025.126801
Haghiabi, A.H., A.H. Nasrolahi, & A. Parsaie, 2018, Water quality prediction using machine learning methods. Water Qual. Res. J., 53(1): 3–13. https://doi.org/10.2166/wqrj.2018.025
He, H.H., X. Li, D. Wang, W. Qiao, Y. Sun, Y. Han, F. Zhang, & X. Zhao, 2025, A novel quad-modality deep neural network for estimating chlorophyll-a concentrations in Lianyungang’s lakes and reservoirs using Sentinel-2 MSI data. Water Res., 286(July): 124246. Elsevier Ltd. https://doi.org/10.1016/j.watres.2025.124246
Imani, M., M.M. Hasan, L.F. Bittencourt, K. McClymont, & Z. Kapelan, 2021, A novel machine learning application: Water quality resilience prediction Model. Sci. Total Environ., 768: 144459. Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2020.144459
Jing, Y., L. Lin, X. Li, T. Li, & H. Shen, 2022, An attention mechanism based convolutional network for satellite precipitation downscaling over China. J. Hydrol., 613(PB): 128388. Elsevier B.V. https://doi.org/10.1016/j.jhydrol.2022.128388
Kantayeva, G., J. Lima, & A.I. Pereira, 2023, Application of machine learning in dementia diagnosis: A systematic literature review. Heliyon, 9(11): e21626. https://doi.org/10.1016/j.heliyon.2023.e21626
Karadayı, Y., M.N. Aydin, & A.S. Öğrenci, 2020, A Hybrid Deep Learning Framework for Unsupervised Anomaly Detection in Multivariate. Appl. Sci., 10(15): 5191. https://doi.org/10.3390/app10155191
Kavya, M., A. Mathew, P.R. Shekar, & P. Sarwesh, 2023, Short term water demand forecast modelling using artificial intelligence for smart water management. Sustain. Cities Soc., 95(April): 104610. Elsevier Ltd. https://doi.org/10.1016/j.scs.2023.104610
Kehinde, T.O., F.T.S. Chan, & S.H. Chung, 2023, Scientometric review and analysis of recent approaches to stock market forecasting : Two decades survey. Expert Syst. Appl., 213(PC): 119299. Elsevier Ltd. https://doi.org/10.1016/j.eswa.2022.119299
Kim, Y.W., Y.K. Cha, & J. Shin, 2025, A modular deep learning surrogate model for simulating harmful algal blooms in complex process-based systems. Water Res., 285(March): 124059. Elsevier Ltd. https://doi.org/10.1016/j.watres.2025.124059
Krishnan, S.R., M.K. Nallakaruppan, R. Chengoden, S. Koppu, M. Iyapparaja, J. Sadhasivam, & S. Sethuraman, 2022, Smart Water Resource Management Using Artificial Intelligence—A Review. Sustainability, 14(20): 13384. https://doi.org/10.3390/su142013384
Li, F., S. Chao, X. Wang, Z. Hu, D. Wang, C. Tang, Z. Gong, H. Zhang, & M. Fan, 2025, AI-Enhanced SERS with Probe Combinations for Concurrent Identification and Quantification of Coexisting Metal Ions in Water. Environ. Sci. Technol. American Chemical Society 59(32. https://doi.org/10.1021/acs.est.5c07025
Lowe, M., R. Qin, & X. Mao, 2022, A Review on Machine Learning, Artificial Intelligence, and Smart Technology in Water Treatment and Monitoring. Water, 14 (9): 1384. https://doi.org/https://doi.org/10.3390/w14091384
Ma, K., D. Feng, K. Lawson, W.P. Tsai, C. Liang, X. Huang, A. Sharma, & C. Shen, 2021, Transferring Hydrologic Data Across Continents – Leveraging Data-Rich Regions to Improve Hydrologic Prediction in Data-Sparse Regions. Water Resour. Res., 57 (5): e2020WR028600. https://doi.org/10.1029/2020WR028600
Prasad, D.V.V., L.Y. Venkataramana, P.S. Kumar, G. Prasannamedha, S. Harshana, S.J. Srividya, K. Harrinei, & S. Indraganti, 2022, Analysis and prediction of water quality using deep learning and auto deep learning techniques. Sci. Total Environ., 821: 153311. Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2022.153311
Roudbari, N.S., C. Poullis, Z. Patterson, & U. Eicker, 2023, TransGlow: Attention-augmented Transduction model based on Graph Neural Networks for Water Flow Forecasting. 2023 Int. Conf. Mach. Learn. Appl., 626–632. Florida, USA.
Santos-Fernandez, E., S. Denman, & K. Mengersen, 2025, New Bayesian and deep learning spatio-temporal models can reveal anomalies in sensor data more effectively. Water Res., 286(May): 123928. Elsevier Ltd. https://doi.org/10.1016/j.watres.2025.123928
Shi, H., 2024, Approaches for enhancing extrapolability in process-based and data-driven models in hydrology. arXiv:2408.07071v1 [physics.geo-ph]. https://doi.org/10.48550/arXiv.2408.07071
Sit, M., B.Z. Demiray, Z. Xiang, G.J. Ewing, Y. Sermet, & I. Demir, 2020, A comprehensive review of deep learning applications in hydrology and water resources. Water Sci. Technol., 82(12): 2635–2670. https://doi.org/10.2166/wst.2020.369
Virro, H., A. Kmoch, M. Vainu, & E. Uuemaa, 2022 Machine learning-based water quality modeling at national level in data-scarce region. AGILE: GIScience Series, 3, 66, 2022. | https://doi.org/10.5194/agile-giss-3-66-2022
Wai, K.P., M.Y. Chia, C.H. Koo, Y.F. Huang, & W.C. Chong, 2022, Applications of deep learning in water quality management: A state-of-the-art review. J. Hydrol., 613(PA): 128332. Elsevier B.V. https://doi.org/10.1016/j.jhydrol.2022.128332
Wang, Y.-Q., H.-B. Zhou, X.-Q. Luo, S.-W. Deng, H.-R. Xu, Y.-P. Song, J.-J. Chen, W.-X. Yin, H.-Y. Cheng, A.-J. Wang, & H.-C. Wang, 2025, Machine Learning-Driven Dynamic Measurement of Environmental Indicators in Multiple Scenes and Multiple Disturbances. Environ. Sci. Technol., 59(30): 15877–15889. American Chemical Society (ACS). https://doi.org/10.1021/acs.est.5c06126
Willard, J.D., C. Varadharajan, X. Jia, & V. Kumar, 2025, Time series predictions in unmonitored sites: a survey of machine learning techniques in water resources. Environ. Data Sci., 4: e7. https://doi.org/10.1017/eds.2024.14
Xu, Q., Y. Shi, J. Bamber, Y. Tuo, R. Ludwig, & X.X. Zhu, 2024, Physics-aware Machine Learning Revolutionizes Scientific Paradigm for Machine Learning and Process-based Hydrology. arXiv:2310.05227 [cs.LG]. https://doi.org/10.48550/arXiv.2310.05227
Yan, H., H. Fu, Z. Chen, A.R. Liao, M.Y. Shen, Y. Tao, Y.H. Wu, & H.Y. Hu, 2025, A multi-task deep neural network reveals inflowing river impacts for predictive lake management. Environ. Sci. Ecotechnology, 26: 100592. https://doi.org/10.1016/j.ese.2025.100592
Yang, Y., D. Zhang, J. Quan, P. Wang, & Y. Xu, 2021, Water quality assessment of middle route of south-north water diversion project based on modified nemerow index method. Water Sci. Technol. Water Supply, 21(3): 1005–1015. https://doi.org/10.2166/ws.2021.006
Zhang, C., H. Li, Y. Hu, D. Shen, B. Xu, M. Chen, W. Chu, & R. Li, 2025a, A differentiability-based processes and parameters learning hydrologic model for advancing runoff prediction and process understanding. J. Hydrol., 661(PA): 133594. Elsevier B.V. https://doi.org/10.1016/j.jhydrol.2025.133594
Zhang, J., J. Ma, Y. Xu, D. Liu, Z. Wang, Z. Tao, H. Wei, & R. Xiao, 2025b, Methods for predicting water temperature in data-scarce areas under different climate regions of China. Water Cycle, 6(28): 259–271. KeAi Communications Co., Ltd. https://doi.org/10.1016/j.watcyc.2025.03.001
Zhang, Q., C. Xu, H. Wang, Q. Wang, L. Li, & Y. Luo, 2025c, Simulation and prediction of hydrological processes in Kaidu River Basin based on DHSVM model. J. Hydrol. Reg. Stud., 60(June): 102537. Elsevier B.V. https://doi.org/10.1016/j.ejrh.2025.102537
Zhao, Z., B. Fan, & Y. Zhou, 2024, An Efficient Water Quality Prediction and Assessment Method Based on the Improved Deep Belief Network—Long Short-Term Memory Model. Water (Switzerland), 16(10). https://doi.org/10.3390/w16101362
Zhi, W., A.P. Appling, H.E. Golden, J. Podgorski, & L. Li, 2024, Deep learning for water quality. Nat. Water, 2(3): 228–241. https://doi.org/10.1038/s44221-024-00202-z
Zhu, M., J. Wang, X. Yang, Y. Zhang, L. Zhang, H. Ren, B. Wu, & L. Ye, 2022, A review of the application of machine learning in water quality evaluation. Eco-Environment Heal., 1(2): 107–116. The Authors. https://doi.org/10.1016/j.eehl.2022.06.001
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Rossi Passarella, Ednagea Almira, Harumi Veny, Mastura Diana Marieska

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 3
Number of citations: 0