Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Ecological Questions

A decade of Artificial Intelligence in water management: A systematic review of progress, applications, and challenges (2010-2025)
  • Home
  • /
  • A decade of Artificial Intelligence in water management: A systematic review of progress, applications, and challenges (2010-2025)
  1. Home /
  2. Archives /
  3. Vol. 37 No. 1 (2026): Forthcoming /
  4. Articles

A decade of Artificial Intelligence in water management: A systematic review of progress, applications, and challenges (2010-2025)

Authors

  • Rossi Passarella Department of Computer Engineering, Universitas Sriwijaya https://orcid.org/0000-0002-7243-0451
  • Ednagea Almira Magister of Computer Science, Faculty of Computer Science, Universitas Sriwijaya, 30662, Indonesia https://orcid.org/0009-0005-2562-0833
  • Harumi Veny College of Engineering, School of Chemical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Malaysia https://orcid.org/0000-0001-6604-3554
  • Mastura Diana Marieska Department of informatics engineering, Faculty of Computer Science, Universitas Sriwijaya, 30662, Indonesia https://orcid.org/0009-0002-7768-0238

DOI:

https://doi.org/10.12775/EQ.2026.008

Keywords

Artificial Intelligence, water resource management, water quality, systematic review, hydrology

Abstract

Sustainable water resource management is an increasingly urgent global challenge, where conventional methods are often inadequate. Artificial Intelligence (AI) has emerged as a transformative technology offering advanced solutions. This paper presents a systematic review of the progress, applications, and challenges of AI in water management during the period 2010–2025. Through a thematic analysis of relevant literature, we identify three distinct evolutionary stages: an early stage dominated by traditional machine learning (2010–2015), a deep learning revolution (2016–2020), and an era of Advanced AI Integration and Innovation featuring hybrid models and physics-aware machine learning (2021–2025). Key findings show that AI excels in various applications, particularly high-accuracy water quality prediction, real-time monitoring systems, process optimization, and predictive analytics for disaster mitigation. Despite its significant strengths in accuracy and data processing, major challenges remain, including data availability limitations, lack of model interpretability (“black box”), and generalization difficulties. This review concludes that future research directions, such as Explainable AI (XAI) and domain knowledge integration, are crucial to overcoming these barriers and realizing the full potential of AI in creating intelligent, efficient, and resilient water management systems.

References

Adebayo, A.I., K.T. Olubanjo, A.M. Fadeke, J.J. Uyanah, A.T. Zirra, A. Igbaoreto, & P.D. Fakoyede, 2025, From Static Sampling to Dynamic Insights: The Future of Water Quality Monitoring with Sensors, IoT, and Drones. Science World Journal, 20(1): 454–466. https://dx.doi.org/10.4314/swj.v20i1.61

Ahmed, A.N., F.B. Othman, H.A. Afan, R.K. Ibrahim, C.M. Fai, Md.S. Hossain, M. Ehteram, & A. Elshafie, 2019, Machine learning methods for better water quality prediction. J. Hydrol., 578(November): 124084. Elsevier Ltd. https://doi.org/10.1016/j.jhydrol.2019.124084

Al-Adhaileh, M.H., & F.W. Alsaade, 2021, Modelling and prediction of water quality by using artificial intelligence. Sustainability, 13(8): 4259. https://doi.org/10.3390/su13084259

Alharbi, A.H., F.H. Rizk, K.S. Gaber, M.M. Eid, E.S.M. El-Kenawy, E. Khodadadi, & N. Khodadadi, 2025, Hybrid deep learning optimization for smart agriculture: Dipper throated optimization and polar rose search applied to water quality prediction. PLoS One, 20(7 July): 1–43. https://doi.org/10.1371/journal.pone.0327230

Bo, L., L. Junrui, & L. Xuegang, 2025, Multi-dimensional water quality indicators forecasting from IoT sensors: A tensor decomposition and multi-head self-attention mechanism. PLoS One, 20 (7 July): e00326870. https://doi.org/10.1371/journal.pone.0326870

Chaiyana, A., A. Kumari, & S.V.K. Jagadish, 2025, Crop field segmentation and irrigation water source attribution for groundwater monitoring and projection toward conservation in the Texas High Plains. Sci. Total Environ. 994(June), 180031. Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2025.180031

Chellaiah, C., S. Anbalagan, D. Swaminathan, S. Chowdhury, T. Kadhila, A.K. Shopati, S. Shangdiar, B. Sharma, & K.T.T. Amesho, 2024, Integrating deep learning techniques for effective river water quality monitoring and management. J. Environ. Manage., 370 (September): 122477. Elsevier Ltd. https://doi.org/10.1016/j.jenvman.2024.122477

Danvirutai, P., S. Charoenwattanasak, S. Tola, K. Thaiso, B. Yuangsoi, H.T. Minh, & C. Srichan, 2025, An integrating RAG-LLM and deep Q-network framework for intelligent fish control systems. Sci. Rep., 15(1): 21377. https://doi.org/10.1038/s41598-025-05892-3

Dodig, A., E. Ricci, G. Kvascev, & M. Stojkovic, 2024, A novel machine learning-based framework for the water quality parameters prediction using hybrid long short-term memory and locally weighted scatterplot smoothing methods. J. Hydroinformatics, 26(5): 1059–1079. https://doi.org/10.2166/hydro.2024.273

Drogkoula, M., K. Kokkinos, & N. Samaras, 2023, A Comprehensive Survey of Machine Learning Methodologies with Emphasis in Water Resources Management. Appl. Sci., 13(22): 12147. https://doi.org/10.3390/app132212147

Durgun, Y., 2024, Real-time water quality monitoring using AI-enabled sensors: Detection of contaminants and UV disinfection analysis in smart urban water systems. J. King Saud Univ. - Sci., 36(9): 103409. Elsevier B.V. https://doi.org/10.1016/j.jksus.2024.103409

Fan, Y., R. Yu, J.R. Barclay, A.P. Appling, Y. Sun, Y. Xie, & X. Jia, 2025, Multi-scale graph learning for anti-sparse downscaling. Proc. Thirty-Ninth AAAI Conf. Artif. Intell. Thirty-Seventh Conf. Innov. Appl. Artif. Intell. Fifteenth Symp. Educ. Adv. Artif. Intell., AAAI’25/IAAI’25/EAAI’25. AAAI Press.

Gao, Z., G. Wang, Y. Zhu, J. Chen, L. Fang, S. Ren, J. Li, Y. A, W. Wang, & Q. Wang, 2025, Prediction of water quality parameters and pollution exceedance analysis in typical rivers of semi-arid regions based on interpretable deep learning models. Environ. Pollut., 383 (June): 126801. Elsevier Ltd. https://doi.org/10.1016/j.envpol.2025.126801

Haghiabi, A.H., A.H. Nasrolahi, & A. Parsaie, 2018, Water quality prediction using machine learning methods. Water Qual. Res. J., 53(1): 3–13. https://doi.org/10.2166/wqrj.2018.025

He, H.H., X. Li, D. Wang, W. Qiao, Y. Sun, Y. Han, F. Zhang, & X. Zhao, 2025, A novel quad-modality deep neural network for estimating chlorophyll-a concentrations in Lianyungang’s lakes and reservoirs using Sentinel-2 MSI data. Water Res., 286(July): 124246. Elsevier Ltd. https://doi.org/10.1016/j.watres.2025.124246

Imani, M., M.M. Hasan, L.F. Bittencourt, K. McClymont, & Z. Kapelan, 2021, A novel machine learning application: Water quality resilience prediction Model. Sci. Total Environ., 768: 144459. Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2020.144459

Jing, Y., L. Lin, X. Li, T. Li, & H. Shen, 2022, An attention mechanism based convolutional network for satellite precipitation downscaling over China. J. Hydrol., 613(PB): 128388. Elsevier B.V. https://doi.org/10.1016/j.jhydrol.2022.128388

Kantayeva, G., J. Lima, & A.I. Pereira, 2023, Application of machine learning in dementia diagnosis: A systematic literature review. Heliyon, 9(11): e21626. https://doi.org/10.1016/j.heliyon.2023.e21626

Karadayı, Y., M.N. Aydin, & A.S. Öğrenci, 2020, A Hybrid Deep Learning Framework for Unsupervised Anomaly Detection in Multivariate. Appl. Sci., 10(15): 5191. https://doi.org/10.3390/app10155191

Kavya, M., A. Mathew, P.R. Shekar, & P. Sarwesh, 2023, Short term water demand forecast modelling using artificial intelligence for smart water management. Sustain. Cities Soc., 95(April): 104610. Elsevier Ltd. https://doi.org/10.1016/j.scs.2023.104610

Kehinde, T.O., F.T.S. Chan, & S.H. Chung, 2023, Scientometric review and analysis of recent approaches to stock market forecasting : Two decades survey. Expert Syst. Appl., 213(PC): 119299. Elsevier Ltd. https://doi.org/10.1016/j.eswa.2022.119299

Kim, Y.W., Y.K. Cha, & J. Shin, 2025, A modular deep learning surrogate model for simulating harmful algal blooms in complex process-based systems. Water Res., 285(March): 124059. Elsevier Ltd. https://doi.org/10.1016/j.watres.2025.124059

Krishnan, S.R., M.K. Nallakaruppan, R. Chengoden, S. Koppu, M. Iyapparaja, J. Sadhasivam, & S. Sethuraman, 2022, Smart Water Resource Management Using Artificial Intelligence—A Review. Sustainability, 14(20): 13384. https://doi.org/10.3390/su142013384

Li, F., S. Chao, X. Wang, Z. Hu, D. Wang, C. Tang, Z. Gong, H. Zhang, & M. Fan, 2025, AI-Enhanced SERS with Probe Combinations for Concurrent Identification and Quantification of Coexisting Metal Ions in Water. Environ. Sci. Technol. American Chemical Society 59(32. https://doi.org/10.1021/acs.est.5c07025

Lowe, M., R. Qin, & X. Mao, 2022, A Review on Machine Learning, Artificial Intelligence, and Smart Technology in Water Treatment and Monitoring. Water, 14 (9): 1384. https://doi.org/https://doi.org/10.3390/w14091384

Ma, K., D. Feng, K. Lawson, W.P. Tsai, C. Liang, X. Huang, A. Sharma, & C. Shen, 2021, Transferring Hydrologic Data Across Continents – Leveraging Data-Rich Regions to Improve Hydrologic Prediction in Data-Sparse Regions. Water Resour. Res., 57 (5): e2020WR028600. https://doi.org/10.1029/2020WR028600

Prasad, D.V.V., L.Y. Venkataramana, P.S. Kumar, G. Prasannamedha, S. Harshana, S.J. Srividya, K. Harrinei, & S. Indraganti, 2022, Analysis and prediction of water quality using deep learning and auto deep learning techniques. Sci. Total Environ., 821: 153311. Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2022.153311

Roudbari, N.S., C. Poullis, Z. Patterson, & U. Eicker, 2023, TransGlow: Attention-augmented Transduction model based on Graph Neural Networks for Water Flow Forecasting. 2023 Int. Conf. Mach. Learn. Appl., 626–632. Florida, USA.

Santos-Fernandez, E., S. Denman, & K. Mengersen, 2025, New Bayesian and deep learning spatio-temporal models can reveal anomalies in sensor data more effectively. Water Res., 286(May): 123928. Elsevier Ltd. https://doi.org/10.1016/j.watres.2025.123928

Shi, H., 2024, Approaches for enhancing extrapolability in process-based and data-driven models in hydrology. arXiv:2408.07071v1 [physics.geo-ph]. https://doi.org/10.48550/arXiv.2408.07071

Sit, M., B.Z. Demiray, Z. Xiang, G.J. Ewing, Y. Sermet, & I. Demir, 2020, A comprehensive review of deep learning applications in hydrology and water resources. Water Sci. Technol., 82(12): 2635–2670. https://doi.org/10.2166/wst.2020.369

Virro, H., A. Kmoch, M. Vainu, & E. Uuemaa, 2022 Machine learning-based water quality modeling at national level in data-scarce region. AGILE: GIScience Series, 3, 66, 2022. | https://doi.org/10.5194/agile-giss-3-66-2022

Wai, K.P., M.Y. Chia, C.H. Koo, Y.F. Huang, & W.C. Chong, 2022, Applications of deep learning in water quality management: A state-of-the-art review. J. Hydrol., 613(PA): 128332. Elsevier B.V. https://doi.org/10.1016/j.jhydrol.2022.128332

Wang, Y.-Q., H.-B. Zhou, X.-Q. Luo, S.-W. Deng, H.-R. Xu, Y.-P. Song, J.-J. Chen, W.-X. Yin, H.-Y. Cheng, A.-J. Wang, & H.-C. Wang, 2025, Machine Learning-Driven Dynamic Measurement of Environmental Indicators in Multiple Scenes and Multiple Disturbances. Environ. Sci. Technol., 59(30): 15877–15889. American Chemical Society (ACS). https://doi.org/10.1021/acs.est.5c06126

Willard, J.D., C. Varadharajan, X. Jia, & V. Kumar, 2025, Time series predictions in unmonitored sites: a survey of machine learning techniques in water resources. Environ. Data Sci., 4: e7. https://doi.org/10.1017/eds.2024.14

Xu, Q., Y. Shi, J. Bamber, Y. Tuo, R. Ludwig, & X.X. Zhu, 2024, Physics-aware Machine Learning Revolutionizes Scientific Paradigm for Machine Learning and Process-based Hydrology. arXiv:2310.05227 [cs.LG]. https://doi.org/10.48550/arXiv.2310.05227

Yan, H., H. Fu, Z. Chen, A.R. Liao, M.Y. Shen, Y. Tao, Y.H. Wu, & H.Y. Hu, 2025, A multi-task deep neural network reveals inflowing river impacts for predictive lake management. Environ. Sci. Ecotechnology, 26: 100592. https://doi.org/10.1016/j.ese.2025.100592

Yang, Y., D. Zhang, J. Quan, P. Wang, & Y. Xu, 2021, Water quality assessment of middle route of south-north water diversion project based on modified nemerow index method. Water Sci. Technol. Water Supply, 21(3): 1005–1015. https://doi.org/10.2166/ws.2021.006

Zhang, C., H. Li, Y. Hu, D. Shen, B. Xu, M. Chen, W. Chu, & R. Li, 2025a, A differentiability-based processes and parameters learning hydrologic model for advancing runoff prediction and process understanding. J. Hydrol., 661(PA): 133594. Elsevier B.V. https://doi.org/10.1016/j.jhydrol.2025.133594

Zhang, J., J. Ma, Y. Xu, D. Liu, Z. Wang, Z. Tao, H. Wei, & R. Xiao, 2025b, Methods for predicting water temperature in data-scarce areas under different climate regions of China. Water Cycle, 6(28): 259–271. KeAi Communications Co., Ltd. https://doi.org/10.1016/j.watcyc.2025.03.001

Zhang, Q., C. Xu, H. Wang, Q. Wang, L. Li, & Y. Luo, 2025c, Simulation and prediction of hydrological processes in Kaidu River Basin based on DHSVM model. J. Hydrol. Reg. Stud., 60(June): 102537. Elsevier B.V. https://doi.org/10.1016/j.ejrh.2025.102537

Zhao, Z., B. Fan, & Y. Zhou, 2024, An Efficient Water Quality Prediction and Assessment Method Based on the Improved Deep Belief Network—Long Short-Term Memory Model. Water (Switzerland), 16(10). https://doi.org/10.3390/w16101362

Zhi, W., A.P. Appling, H.E. Golden, J. Podgorski, & L. Li, 2024, Deep learning for water quality. Nat. Water, 2(3): 228–241. https://doi.org/10.1038/s44221-024-00202-z

Zhu, M., J. Wang, X. Yang, Y. Zhang, L. Zhang, H. Ren, B. Wu, & L. Ye, 2022, A review of the application of machine learning in water quality evaluation. Eco-Environment Heal., 1(2): 107–116. The Authors. https://doi.org/10.1016/j.eehl.2022.06.001

Downloads

  • pdf

Published

2026-01-23

How to Cite

1.
PASSARELLA, Rossi, ALMIRA, Ednagea, VENY, Harumi and DIANA MARIESKA, Mastura. A decade of Artificial Intelligence in water management: A systematic review of progress, applications, and challenges (2010-2025). Ecological Questions. Online. 23 January 2026. Vol. 37, no. 1, pp. 1-20. [Accessed 26 January 2026]. DOI 10.12775/EQ.2026.008.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 37 No. 1 (2026): Forthcoming

Section

Articles

License

Copyright (c) 2026 Rossi Passarella, Ednagea Almira, Harumi Veny, Mastura Diana Marieska

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 3
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

Artificial Intelligence, water resource management, water quality, systematic review, hydrology
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop