The need for long-term ecological research in subterranean environments
DOI:
https://doi.org/10.12775/EQ.2025.040Keywords
biodiversity, caves, climate change, ecological change, underground ecosystems, long-term studyAbstract
Subterranean habitats, those found beneath the surface of nonmarine environments such as caves, aquifers, and other underground voids, are more widespread and ecologically significant than often assumed. These environments are functionally linked to the adjacent surface ecosystems, sharing hydrological, geochemical, and biological connections. Despite their global distribution and ecological importance, subterranean habitats remain among the least-explored and least-understood ecosystems. However, the scientific neglect of these environments is not limited to species inventories or basic ecological descriptions. This note highlights the near-complete absence of long-term ecological research (LTER) conducted on subterranean ecosystems. While LTER programmes are increasingly recognized as essential for understanding ecosystem dynamics, biodiversity trends, and the impacts of environmental change in terrestrial, freshwater, and marine systems, this kind of study appears to be extremely rare in subterranean environments. The lack of reference long-term studies hinders our ability to detect and interpret temporal changes in community composition, species interactions, and evolutionary processes within these unique environments. Nevertheless, there are compelling scientific reasons to promote the development of long-term ecological research in subterranean ecosystems. In fact, these simplified and relatively buffered habitats offer unique opportunities to study community interactions and adaptations under relatively stable climatic conditions. Furthermore, subterranean environments may serve as natural laboratories for investigating evolutionary processes such as ecological adaptation, morphological convergence, speciation and gene flow, especially when compared to the more variable surface environments with which they are functionally linked.
References
Bettini, A., 2011, Underground laboratories. Nuclear Instruments and Methods in Physics Research A 626–627: S64–S68.
Blanc, S., & Thrall, P.H., 2024, The critical role of very long-term studies in ecology and evolution. Ecology Letters 27, e70049.
Culver, D.C., & Pipan, T., 2009, The biology of caves and other subterranean habitats. Oxford, Oxford University Press.
Culver, D.C., Trontelj, T., Zagmajster M., & Pipan, T., 2012, Paving the way for standardized and comparable subterranean biodiversity studies. Subterranean Biology 10: 43–50. doi: 10.3897/subtbiol.10.4759
Culver, D.C, & Pipan, T., 2014, Shallow sub terranean habitats: ecology, evolution and conservation. Oxford, Oxford University Press.
Domínguez-Villar, D., Loje, S., Krklec, K., Baker, A., & Fairchild,I.J., 2015, Is global warming affecting cave temperatures? Experimental and model data from a paradigmatic case study. Climate Dynamics 45: 569–581.
Ficetola, G.F., Canedoli, C., & Stoch, F., 2019, The Racovitzan impediment and the hidden biodiversity of unexplored environments. Conservation Biology 33:214–216.
Fišer, C., Borko, S., Delic, T., Kos, A., Premate, E., Zagmajster, M., Zakšek, V., & Altermatt, F., 2022, The European green deal misses Europe’s subterranean biodiversity hotspots. Nature Ecology & Evolution 6: 1403–1404.
Ianni, A., 2021, Science in underground laboratories and DULIA-Bio. Frontiers in Physics 9, 612417.
Jones, J.A., & Driscoll, C.T., 2022, Long-term ecological research on ecosystem responses to climate change. BioScience 72(9): 814–826.
Likens, G.E., 1989, Long-term studies in ecology. Approaches and alternatives. Springer Verlag, New York.
Lindenmayer, D.B., Liken, G.E., Andersen, A., Bowman, D., Bull, C.M., Burns, E., Dickman, C.R., Hoffmann, A.A., Keith, D.A., Liddell, M.J, Lowe, A.J., Metcalfe, D.J, Phinn, S.R., Russell-Smith, J., Thurgate, N., & Wardle, G.M., 2012, Value of long-term ecological studies. Austral Ecology 37: 745–757.
Luis-Vargas, M.N., Webb, J., & Bay, S.K., 2024, Linking surface and subsurface: The biogeochemical basis of cave microbial ecosystem services. Journal of Sustainable Agriculture and Environment 3, e70031.
Mammola, S., 2019, Finding answers in the dark: caves as models in ecology fifty years after Poulson and White. Ecography 7: 1331–1351.
Mammola, S., Altermatt, F., Alther, R., Amorim, I.R., Băncilă, R.I., Borges, P.A.V., Brad, T., Brankovits, D., Cardoso, P., Cerasoli, F., Chauveau, C.A., Delić, T., Di Lorenzo, T., Faille, A., Fišer, C., Flot, J-P., Gabriel, R., Galassi, D.M.P., Garzoli, L., Griebler, K., Konecny-Dupré, L., Martínez, A., Mori, N., Nanni, V., Ogorelec, Z., Pallarés, S., Salussolia, A., Saccò, M., Stoch, F., Vaccarelli, I., Zagmajster, M., Zittra, C., Meierhofer, M.B., Sánchez-Fernández, D., & Malard, F., 2024, Perspectives and pitfalls in preserving subterranean biodiversity through protected areas. NPJ Biodiversity 16, 2.
Mammola, S., Amorim, I.R., Bichuette, M.E., Borges, P.A., Cheeptham, N., Cooper, S.J., Culver, D.C., Deharveng, L., Eme, D., Ferreira, R.L., Fišer, C., Fišer, Ž, Fong, D.W., Griebler, C., Jeffery, W.R., Jugovic, J., Kowalko, J.E., Lilley, T.M., Malard, F., & Cardoso, P., 2020, Fundamental research questions in subterranean biology. Biological Reviews 95: 1855–1872.
Mammola, S., Cardoso, P., Culver, D.C., Deharveng, L., Ferreira, R.L., Fišer, C., Galassi, D.M.P., Griebler, C., Halse, S., Humphreys, W.F., Isaia, M., Malard, F., Martinez, A., Moldovan, O.T., Niemiller, M.L., Pavlek, M., Reboliera, A.S.P.S., Sousa-Silva, M., Teeling, E.C., Wynne, J.J., & Zagmajster, M., 2019a, Scientists’ warning on the conservation of subterranean ecosystems. Bioscience 69: 641–650.
Mammola, S., Lunghi, E., Bilandžija, H., Cardoso, P., Grimm, V., Schmidt, S., Hesselberg, T., & Martinez, A., 2021, Collecting eco-evolutionary data in the dark: Impediments to subterranean research and how to overcome them. Ecology and Evolution 11: 5911–5926.
Mammola, S., Meierhofer, M.B., Borges, P.A.V., Colado, R., Culver, D.C., Deharveng, L., Delić, T., Di Lorenzo, T., Dražina, T., Ferreira, R.L., Fiasca, B., Fišer, C., Galassi, D.M.P., Garzoli, L., Gerovasileiou, V., Griebler, C., Halse, S., Howarth, F.G., Isaia, M., Johnson, J.S., Komerički, A., Martínez, A., Milano, F., Moldovan, O.T., Nanni, V., Nicolosi, G., Niemiller, M.L., Pallarés, S., Pavlek, M., Piano, E., Pipan, T., Sanchez-Fernandez, D., Santangeli, A., Schmidt, S.I., Wynne, J.J., Zagmajster, M., Zakšek, V., & Cardoso, P., 2022, Towards evidence-based conservation of subterranean ecosystems. Biological Review of the Cambridge Philosophical Society 97: 1476–1510. doi: 10.1111/brv.12851
Mammola, S., Piano, E., Cardoso, P., Vernon, P., Domínguez-Villar, D., Culver, D.C., Pipan, T., & Isaia, M., 2019b, Climate change going deep: The effects of global climatic alterations on cave ecosystems. Anthropocene Review 6: 98–116.
Mammola, S., Altermatt, F., Alther, R., Amorim, I.R., Băncilă, R.I., Borges, P.A., Brad, T., Brankovits, D., Cardoso, P., Cerasoli, F., Chauveau, C.A., Delić, T., Di Lorenzo, T., Faille, A., Fišer, C., Flot, J.F., Gabriel, R., Galassi, D.M.P., Garzoli, L., Griebler, C., Konecny-Dupre, L., Martinez, A., Mori, N., Nanni, V., Ogorelec, Ž., Pallares, S., Salussolia, A., Sacco, M., Stoch, F., Vaccarelli, I., Zagmajster, M., Zittra, C., Meierhofer, M.B., Sanchez-Fernandez, D., & Malard, F., 2024, Perspectives and pitfalls in preserving subterranean biodiversity through protected areas. npj Biodiversity 3, 2.
Mata da Rocha Melo, L., Ferreira, R.L., & Souza Silva, M., 2025, A review of the factors influencing invertebrate community structure in subterranean habitats. Community Ecology https://doi.org/10.1007/s42974-025-00243-8
Nicolosi, G., & Gerovasileiou, V., 2024, Towards invasion ecology for subterranean ecosystems. Biodiversity and Conservation 33:1561–1569.
Nicolosi, G., Mammol, S., Verbrugge, L., & Isaia, M., 2023, Aliens in caves: the global dimension of biological invasions in subterranean ecosystems. Biological Reviews 98: 849–867.
Niemiller, M.L., Zigler, K., Curtis, A., Trapeni, C.M., Slay, M.E., Culver, D.C., Hutchins, B.T., & Kendall Niemiller, K.D., 2025, Out of sight and out of mind? The conservation status of subterranean biodiversity in the United States and Canada. Biodiversity and Conservation 34: 2851–2882.
Pipan, T., López, H., Oromí, P., Polakd, S., & Culver, D.C., 2010, Temperature variation and the presence of troglobionts in terrestrial shallow subterranean habitats. Journal of Natural History 45: 253–273.
Poulson, T.L., & White, W.B., 1969, The cave environment. Science 165: 971–981.
Raschmanová, N., Šustr, V., Kováč, L., Parimuchová, A., & Devette, M., 2018, Testing the climatic variability hypothesis in edaphic and subterranean Collembola (Hexapoda). Journal of Thermal Biology 78: 391–400.
Rastetter, E.B, Ohman, M.D., Elliot, K.J., Rehaje, J.S., Rivera-Monroy, V.H., Boucek, R.E., Castañeda-Moya, E., Danielson, T.M., Gough, L., Groffman, P.M., Jackson, C.R., Miniat, C.F., & Shaver, G.R., 2021, Time lags: insights from the U.S. Long Term Ecological Research Network. Ecosphere 12, e03431.
Reinke, B.A., Millar, D.A.W., & Janzen, F.J., 2019, What have long-term field studies taught us about population dynamics. Annual Review of Ecology, Evolution, and Systematics 50: 11.1–11.18.
Saccò, M., Mammola, S., Altermatt, F., Alther, R., Bolpagni, R., Brancelj, A., Brankovits, D., Fišer, C., Gerovasileiou, V., Griebler, C., Guareschi, S., Hose, G.C., Korbel, K., Lictevout, E., Malard, F., Martínez, A., Niemiller, M.L., Robertson, A., Tanalgo, K.C., Bichuette, M.E., Borko, S., Brad, T., Campbell, M.A., Cardoso, P., Celico, F., Cooper, S.J.B., Culver, D.C., Di Lorenzo, T., Galassi, D.M.P., Guzik, M.T., Hartland, A., Humphreys, W.F., Ferreira, R.L., Lunghi E., Nizzoli D., Perina G., Raghavan R., Richards Z., Reboleira A.S.P.S., Rohde M.M., Sánchez Fernández, D., Schmidt, S.I., van der Heyde, M., Weaver, L., White, N.E., Zagmajster, M., Hogg, I., Ruhi, A., Gagnon, M.M., Allentoft, M.E., & Reinecke, R., 2023, Groundwater is a hidden global keystone ecosystem. Global Change Biology 30, e17066
Sánchez-Fernández, D., Rizzo, V., Bourdeau, C., Cieslak, A., Comas, J., Faille, A., Fresneda, J., Lleopart, E., Millán, A., Montes, A., Pallarés, S., & Ribera, I., 2018, The deep subterranean environment as a potential model system in ecological, biogeographical and evolutionary research. Subterranean Biology 25: 1–7.
Sánchez-Fernández, D., Galassi, D.M.P., Wynne, J.J., Cardoso, P., & Mammol, S., 2021, Don’t forget subterranean ecosystems in climate change agendas. Nature Climate Change 11: 458–459.
Silveira, F.A.O., 2025, Seven ways to prevent biomism. Ambio 54: 1491–1495.
Simon, K.S., Pipan, T., & Culver, D.C., 2007, A conceptual model of the flow and distribution of organic carbon in caves. Journal of Cave and Karst Studies 69: 279–284.
Sket, B., 2008, Can we agree on an ecological classification of subterranean animals? Journal of Natural History 42: 1549–1563.
Stroud, J.T, & Ratcliff, W.C., 2025, Long-term studies provide unique insights into evolution. Nature 639: 589–601.
Trajano, E., 2000, Cave faunas in the Atlantic tropical rain forest: Composition, ecology, and conservation. Biotropica 32: 882–893.
Vaccarelli, I., Colado, R., Pallarés, S., Galassi, D.M.P., Sanchez-Fernandez, D., Di Cicco, M., Meiherhofer, M., Piano, E., Di Lorenzo, T. & Mammola, S., 2023, A global meta-analysis reveals multilevel and context-dependent effects of climate change on subterranean ecosystems. One Earth 6: 1–13.
White, W.B., Culver, D.C., & Pipan, T., 2019, Encyclopedia of Caves, 3rd ed. Amsterdam, The Netherlands: Elsevier Press, pp. 1118–1127.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Sebastiano Salvidio, Giacomo Rosa, Andrea Costa

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 64
Number of citations: 0