Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Ecological Questions

Geospatial analysis of wildfire patterns and temporal trends in Kohat Division, Pakistan, using Remote Sensing and GIS
  • Home
  • /
  • Geospatial analysis of wildfire patterns and temporal trends in Kohat Division, Pakistan, using Remote Sensing and GIS
  1. Home /
  2. Archives /
  3. Vol. 36 No. 4 (2025): Forthcoming /
  4. Articles

Geospatial analysis of wildfire patterns and temporal trends in Kohat Division, Pakistan, using Remote Sensing and GIS

Authors

  • Aiman Iman Department of Geography and Geomatics, University of Peshawar, Pakistan
  • Atta-ur Rahman Department of Geography and Geomatics, University of Peshawar, Pakistan
  • Ghani Rahman Department of Geography, University of Gujrat

DOI:

https://doi.org/10.12775/EQ.2025.035

Keywords

wildfire, remote sensing, GIS, NBR, dNBR, Kohat Division, Pakistan

Abstract

This study analyzes the spatial and temporal patterns of wildfires in the Kohat Division of Pakistan using Landsat satellite imagery from 2013 to 2022. Kohat Division falls in the extension of Hindukush and Sufaid Koh ranges, drained by Kurram and Kohat Toi rivers. The study area is an ecologically diverse region with a variety of tree species. The Normalized Burn Ratio (NBR) index and Delta Normalize Burn Ratio (dNBR) indices were applied to map burnt areas and assess wildfire intensity. The results revealed that wildfire incidents peaked in 2016 and 2020, causing extensive damage in the Kurram and Orakzai districts. Temporal analysis showed an increasing frequency of wildfire associated with higher pre-fire temperature and prolonged dry conditions. The findings highlight the growing vulnerability of forest ecosystems in Pakistan and underline the need for continuous satellite-based monitoring and proactive forest management strategies.

References

Bui, D.T., Le, K.T.T., Nguyen, V.C., Le, H.D., & Revhaug I., 2016, Tropical Wildfire Susceptibility Mapping at the Cat Ba National Park Area, Hai Phong City, Vietnam, Using GIS-Based Kernel Logistic Regression. Remote Sensing 8(4), 347.

Çolak, E., & Sunar, F., 2022, Investigating the usefulness of satellite-retrieved land surface temperature (LST) in pre-and post-fire spatial analysis. Earth Science Informatics 16(1): 945–963.

Dawood, M., Rahman, A.-u., Ullah, S., Rahman, G., & Azam, K., 2018, Spatio-temporal analysis of temperature variability, trend, and magnitude in the Hindu Kush region using Monte Carlo and Sen’s slope approaches. Arabian Journal of Geosciences 11(16), 471.

Escuin, S., Navarro, R., & Fernández, P., 2008, Fire severity assessment by using NBR (Normalized Burn Ratio) and NDVI (Normalized Difference Vegetation Index) derived from Landsat TM/ETM images. International Journal of Remote Sensing 29(4): 1053–1073.

Food and Agriculture Organization of the United Nations, 2010, Global Forest Resources Assessment 2010, Country Report, Pakistan. Retrieved from https://www.fao.org/forestry/20410-070585b62fd17653faf962214591cef02.pdf

Government of Pakistan (GoP), 1998, Districts Hangu, Karak, Kohat, Kurram and Orakzai Hangu, Population census reports. Population Census organization, Islamabad.

Ilahi, I., 2008, Ethnobotanical studies and problems associated with regeneration of herbals in Kohat region. Pakistan Journal of Botany 40(4): 1743–1753.

Jin, R., & Lee, K.S., 2022, Investigation of Wildfire Characteristics in North Korea Using Remote Sensing Data and GIS. Remote Sensing 14(22), 5836.

Kodandapani, N., Cochrane, M.A., & Sukumar, R., 2004, Conservation threat of increasing fire frequencies in the Western Ghats, India. Conservation Biology 18(6): 1553–1561.

Leal, P.A.H., Calvo, A.G., Arbelo, M., Barreto, A & Benito, A.A., 2008, Synergy of GIS and remote sensing data in wildfire danger modeling. IEEE Journal of selected topics in applied earth observations and remote sensing 1(4): 240–247.

Leblon, B., Chavez, L.B., & Ayanz, J.S.M., 2012, Use of remote sensing in wildfire management, [in:] Curkovic S. (ed.) Sustainable development-authoritative and leading edge content for environmental management, pp. 55–82. InTech; 2012. Available from: http://dx.doi.org/10.5772/2562

Liu, Y., Stanturf, J., & Goodrick, S., 2010, Trends in global wildfire potential in a changing climate. Forest Ecology and Management 259(4): 685–697.

Ma, C., Pu, R., Downs, J., & Jin, H., 2022, Characterizing spatial patterns of Amazon rainforest wildfires and driving factors by using remote sensing and GIS geospatial technologies. Geosciences, 12(6), 237.

Nafees, M., & Asghar, A., 2009, Wildfire events in Swat valley, Pakistan. Pakistan Journal of Plant Science 15(1): 31–37.

Naseer, R., & Chaudhary, M.N., 2025, Assessing forest fire likelihood and identification of fire risk zones using maximum entropy-based model in Khyber Pakhtunkhwa, Pakistan. Environmental Monitoring and Assessment 197(3), 281.

Naseer, R., & Chaudhary, M.N., 2025 Assessing forest fire likelihood and identification of fire risk zones using maximum entropy-based model in Khyber Pakhtunkhwa, Pakistan. Environmental Monitoring and Assessment 197(3), 281.

Rafiq, M., Cong Li, Y., Cheng, Y., Rahman, G., Zhao, Y., & Khan, H.U., 2023 Estimation of regional meteorological aridity and drought characteristics in Baluchistan province, Pakistan. PLOS ONE 18(11), e0293073. doi:10.1371/journal.pone.0293073

Rahman, G., Rahman, A.-u., Ullah, S., & Collins, A.E., 2017, Geospatial Analysis of Landslide Susceptibility and Zonation in Shahpur Valley, Eastern Hindu Kush using Frequency Ratio Model: Geospatial Analysis of Landslide Susceptibility. Proceedings of the Pakistan Academy of Sciences: B. Life and Environmental Sciences 54(3): 149–163.

Royé, D., Tedim, F., Martin‐Vide, J., Salis, M., Vendrell, J., Lovreglio, R., ... & Leone, V., 2020, Wildfire burnt area patterns and trends in Western Mediterranean Europe via the application of a concentration index. Land Degradation & Development 31(3): 311–324.

Shi, K., & Touge, Y., 2022, Characterization of global wildfire burned area spatiotemporal patterns and underlying climatic causes. Scientific Reports 12(1), 644.

Syifa, M., Panahi, M., & Lee, C.W., 2020, Mapping of Post-Wildfire Burned Area Using a Hybrid Algorithm and Satellite Data: The Case of the Camp Fire Wildfire in California, USA. Remote Sensing 12(4), 623.

Tariq, A., Shu, H., Siddiqui, S., Mousa, B.G., Munir, I., Nasri, A., Waqqas, H., Lu, L., & Baqa, M.F., 2021 Wildfire monitoring using spatial-statistical and Geo-spatial analysis of factors determining wildfire in Margalla Hills, Islamabad, Pakistan. Natural Hazards and Risk 12(1): 1212–1233.

Tariq, A., Shu, H., Siddiqui, S., Munir, I., Sharifi, A., Li, Q., & Lu, L., 2022, Spatio-temporal analysis of wildfire events in the Margalla Hills, Islamabad, Pakistan using socio-economic and environmental variable data with machine learning methods. Journal of Forestry Research 33(1): 183–194.

Wang, L., Qu, J.J., & Hao, X., 2008, Wildfire detection using the normalized multi-band drought index (NMDI) with satellite measurements. Agricultural and Forest Meteorology 148(11): 1767–1776.

Wani, B.A., 2005, National Forest Policy Review-Pakistan. Ministry of Environment Local Government and Rural Development.

Weber, K.T., & Yadav, R., 2020, Spatiotemporal trends in wildfires across the Western United States (1950–2019). Remote Sensing 12(18), 2959.

Yang, X., Jin, X., & Zhou, Y., 2021, Wildfire risk assessment and zoning by integrating Maxent and GIS in Hunan province, China. Forests 12(10), 1299.

Yilmaz, O.S., Acar, U., Sanli, F.B., Gulgen, F., & Ates, A.M., 2023, Mapping burn severity and monitoring CO content in Türkiye’s 2021 wildfires, using Sentinel-2 and Sentinel-5P satellite data on the GEE platform. Earth Science Informatics 16(1): 221–240.

Zhang, Y., Lim, S., & Sharples, J.J., 2016, Modelling spatial patterns of wildfire occurrence in South-Eastern Australia. Geomatics, Natural Hazards and Risk 7(6): 1800–1815.

Downloads

  • pdf

Published

2025-10-27

How to Cite

1.
IMAN, Aiman, RAHMAN, Atta-ur and RAHMAN, Ghani. Geospatial analysis of wildfire patterns and temporal trends in Kohat Division, Pakistan, using Remote Sensing and GIS. Ecological Questions. Online. 27 October 2025. Vol. 36, no. 4, pp. 1-27. [Accessed 28 December 2025]. DOI 10.12775/EQ.2025.035.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 36 No. 4 (2025): Forthcoming

Section

Articles

License

Copyright (c) 2025 Aiman Iman, Atta-ur Rahman, Ghani Rahman

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 198
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

wildfire, remote sensing, GIS, NBR, dNBR, Kohat Division, Pakistan
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop