The ecohydrology framework. Bibliometric network analysis and literature review
DOI:
https://doi.org/10.12775/EQ.2025.013Keywords
ecohydrology, ecosystem accounting, ecohydrological modelling, bibliometric network analysisAbstract
In the context of increasing environmental stressors, Ecohydrology represents an interdisciplinary and comprehensive framework useful to ensure the sustainable management of water resources, mitigating risks to both anthropic and ecological systems. This research examines the milestones of Ecohydrology through a Bibliometric Network Analysis and literature review, emphasizing its possible integration with Ecosystem and Environmental accounting. In particular, it explores how the Ecohydrological perspective can support researchers, local managers, policy-makers and other stakeholders in building climate-resilient cities. A total number of 3335 articles were analysed using the VOSviewer software to perform a bibliometric network analysis. Three thousand one hundred articles were screened for the literature review. Then, 719 were selected through cross-reference and their abstracts were reviewed. Finally, 290 full text articles were reviewed and data were extracted from 36 articles. Key findings highlight the urgent need to study the interplay between hydrological processes and water-related ecosystem services for addressing the mounting challenges posed by human activities and the resulting climate change. The main objective of this field of science is to comprehend and mitigate the effects of land use changes on water and to forecast the impact of climate change on ecosystems and water supply. Bibliometric network maps reveal limited research on the convergence of Ecohydrology, Ecosystem accounting, and Environmental accounting, indicating the need for further research and collaborative efforts to overcome this knowledge gap. Lastly, ecological and socioeconomic considerations are crucial in water-related management, as economic growth and human well-being are intricately linked to water resources and healthy ecosystems. Addressing these challenges and ensuring sustainable water management require cooperation among ecohydrologists, other scientists, stakeholders, and decision-makers. Integrating the ecohydrological perspective into ecosystem accounting is essential to facilitate dialogue among different disciplines and better adapt to climate change.
References
Alvarado, O., Alfonso, O., Medrano, A., Bierkens, M., Prusina, I., & Contact, A. (2019). Measuring the benefits of urban nature-based solutions through quantitative assessment tools MSc Water Science and Management.
Anderies, J. M., Ryan, P., & Walker, B. H. (2006). Loss of resilience, crisis, and institutional change: Lessons from an intensive agricultural system in southeastern Australia. Ecosystems, 9(6), 865–878. https://doi.org/10.1007/s10021-006-0017-1
Asbjornsen, H., Goldsmith, G. R., Alvarado-Barrientos, M. S., Rebel, K., Van Osch, F. P., Rietkerk, M., Chen, J., Gotsch, S., Tobón, C., Geissert, D. R., Gómez-Tagle, A., Vache, K., & Dawson, T. E. (2011a). Ecohydrological advances and applications in plant-water relations research: A review. Journal of Plant Ecology, 4(1–2), 3–22. https://doi.org/10.1093/jpe/rtr005
Beier, M., Gerstendörfer, J., Mendzigall, K., Pavlik, D., Trute, P., & von Tils, R. (2022). Climate Impact and Model Approaches of Blue-Green Infrastructure Measures for Neighborhood Planning. Sustainability (Switzerland), 14(11). https://doi.org/10.3390/su14116861
Bridgewater, P. (2021). A commentary on ecohydrology as a science-policy interface in implementing the UN Sustainable Development Goals. Ecohydrology and Hydrobiology, 21(3), 387–392. https://doi.org/10.1016/j.ecohyd.2021.07.005
Cammeraat, E. L. H., Cerdà, A., & Imeson, A. C. (2010). Ecohydrological adaptation of soils following land abandonment in a semi-arid environment. Ecohydrology, 3(4), 421–430. https://doi.org/10.1002/eco.161
Cleverly, J., Eamus, D., Restrepo Coupe, N., Chen, C., Maes, W., Li, L., Faux, R., Santini, N. S., Rumman, R., Yu, Q., Yu, Q., & Huete, A. (2016). Soil moisture controls on phenology and productivity in a semi-arid critical zone. Science of the Total Environment, 568, 1227–1237. https://doi.org/10.1016/j.scitotenv.2016.05.142
De Molenaar, J. G. (1987). An Ecohydrological Approach to Floral and Vegetational Patterns in Arctic Landscape Ecology. In Arctic and Alpine Research (Vol. 19, Issue 4).
D’Odorico P, P. A. W. R. C. (2019). Dryland eco- hydrology. Springer, New York.
Dutta, A., Torres, A. S., & Vojinovic, Z. (2021). Evaluation of pollutant removal efficiency by small-scale nature-based solutions focusing on bio-retention cells, vegetative swale and porous pavement. Water (Switzerland), 13(17). https://doi.org/10.3390/w13172361
Eagleson P. (2000). Ecoydrology. Darwinian expression of vegetation form and function. Cambridge University Press, New York.
Engler A, D. (1919). Untersuchungen u¨ ber den Einflub des Waldes auf den Stand des der Gewa¨ sser. Mitt Schweiz Zentralans Forsliche Versuchs 12:636.
Ghofrani, Z., Sposito, V., & Faggian, R. (2017). A Comprehensive Review of Blue-Green Infrastructure Concepts. In International Journal of Environment and Sustainability (Vol. 6, Issue 1). www.sciencetarget.com
Heimsath A, D. W. N. K. F. C. (1997). The soil production function and landscape equilibrium. Nature 388:58–361.
Hiwasaki, L., & Arico, S. (2007). Integrating the social sciences into ecohydrology: Facilitating an interdisciplinary approach to solve issues surrounding water, environment and people. Ecohydrology and Hydrobiology, 7(1), 3–9. https://doi.org/10.1016/S1642-3593(07)70184-2
IHP UNESCO. (n.d.). WATER history for our times.
Ingram, H. A. P. (1987). Ecohydrology of Scottish peatlands. Transactions of the Royal Society of Edinburgh: Earth Sciences, 78(4), 287–296. https://doi.org/10.1017/S0263593300011226
IPCC. (2023a). Climate Change 2023: Synthesis Report | UNEP - UN Environment Programme. https://www.unep.org/resources/report/climate-change-2023-synthesis-report
Izydorczyk, K., Piniewski, M., Krauze, K., Courseau, L., Czyż, P., Giełczewski, M., Kardel, I., Marcinkowski, P., Szuwart, M., Zalewski, M., & Frątczak, W. (2019). The ecohydrological approach, SWAT modelling, and multi-stakeholder engagement – A system solution to diffuse pollution in the Pilica basin, Poland. Journal of Environmental Management, 248. https://doi.org/10.1016/j.jenvman.2019.109329
Janauer, G. A. (2000). Ecohydrology: Fusing concepts and scales. Ecological Engineering, 16(1), 9–16. https://doi.org/10.1016/S0925-8574(00)00072-0
Jarlan, L., Khabba, S., Er-Raki, S., Le Page, M., Hanich, L., Fakir, Y., Merlin, O., Mangiarotti, S., Gascoin, S., Ezzahar, J., Kerr, Y., & Escadafal, R. (2015). Remote Sensing of Water Resources in Semi-Arid Mediterranean Areas: the joint international laboratory TREMA. International Journal of Remote Sensing, 36(19–20), 4879–4917. https://doi.org/10.1080/01431161.2015.1093198
Jenerette, G. D., Barron-Gafford, G. A., Guswa, A. J., McDonnell, J. J., & Villegas, J. C. (2012a). Organization of complexity in water limited ecohydrology. Ecohydrology, 5(2), 184–199. https://doi.org/10.1002/eco.217
Jun, X., & Yongyong, Z. (2008). Water security in north China and countermeasure to climate change and human activity. Physics and Chemistry of the Earth, 33(5), 359–363. https://doi.org/10.1016/j.pce.2008.02.009
Laio, F., Tamea, S., Ridolfi, L., D’Odorico, P., & Rodriguez-Iturbe, I. (2009). Ecohydrology of groundwater-dependent ecosystems: 1. Stochastic water table dynamics. Water Resources Research, 45(5). https://doi.org/10.1029/2008WR007292
Lamond, J., & Everett, G. (2019). Sustainable Blue-Green Infrastructure: A social practice approach to understanding community preferences and stewardship. Landscape and Urban Planning, 191. https://doi.org/10.1016/j.landurbplan.2019.103639
Li, X., Yang, D., Zheng, C., & Huang, M. (2017). Ecohydrology. October. https://doi.org/10.1007/978-981-10-1884-8
Li, Z., Xu, X., Yu, B., Xu, C., Liu, M., & Wang, K. (2016). Quantifying the impacts of climate and human activities on water and sediment discharge in a karst region of southwest China. Journal of Hydrology, 542, 836–849. https://doi.org/10.1016/j.jhydrol.2016.09.049
Liu, M., Gu, D. D., Li, Y., Liu, S. M., & Liu, W. Z. (2017). A bibliometric analysis of the literature on coupled water-energy balance at catchment scale and its responses to changes in climate and land surface conditions. Shengtai Xuebao, 37(23), 8128–8138. https://doi.org/10.5846/stxb201708071410
Mari, L., Casagrandi, R., Bertuzzo, E., Rinaldo, A., & Gatto, M. (2014). Metapopulation persistence and species spread in river networks. Ecology Letters, 17(4), 426–434. https://doi.org/10.1111/ele.12242
Maritan A, R. R. B. J. R. A. (2002). Network allometry. Geophys Res Lett 29:1–4.
Montgomery D, D. W. (1988). Where do channels begin? Nature 336:232–234.
Montgomery D, D. W. (1992). Channel initiation and the problem of landscape scale. Science 255:826–830.
Muneepeerakul R, B. E. R. A. R.-I. I. (2008). Patterns of vegetation biodiversity: the roles of dis- persal directionality and river network structure. J Theor Biol 252(2):221–229.
Muneepeerakul R, B. E. R. A. R.-I. I. (2019). Evolving biodiversity patterns in changing river networks. J Theor Biol 462:418–424.
Nedkov, S., Campagne, S., Borisova, B., Krpec, P., Prodanova, H., Kokkoris, I. P., Hristova, D., Le Clec’h, S., Santos-Martin, F., Burkhard, B., Bekri, E. S., Stoycheva, V., Bruzón, A. G., & Dimopoulos, P. (2022). Modeling water regulation ecosystem services: A review in the context of ecosystem accounting. In Ecosystem Services (Vol. 56). Elsevier B.V. https://doi.org/10.1016/j.ecoser.2022.101458
Nesshöver, C., Assmuth, T., Irvine, K. N., Rusch, G. M., Waylen, K. A., Delbaere, B., Haase, D., Jones-Walters, L., Keune, H., Kovacs, E., Krauze, K., Külvik, M., Rey, F., van Dijk, J., Vistad, O. I., Wilkinson, M. E., & Wittmer, H. (2017). The science, policy and practice of nature-based solutions: An interdisciplinary perspective. Science of The Total Environment, 579, 1215–1227. https://doi.org/10.1016/J.SCITOTENV.2016.11.106
Nguyen, T. T., Pahlow, M., Benavidez, R., Charters, F. J., & Jackson, B. (2022). Implementation and application of an urban pollutant load modelling tool within an ecosystem services assessment modelling framework to assess water purification capabilities of blue-green infrastructure under climate change. Urban Water Journal, 19(9), 945–961. https://doi.org/10.1080/1573062X.2022.2105724
Peng, K., Deng, J., Gong, Z., & Qin, B. (2019). Characteristics and development trends of ecohydrology in lakes and reservoirs: Insights from bibliometrics. Ecohydrology, 12(3). https://doi.org/10.1002/eco.2080
Porporato, A., D’Odorico, P., Laio, F., Ridolfi, L., & Rodriguez-Iturbe, I. (2002). Ecohydrology of water-controlled ecosystems. Advances in Water Resources, 25(8–12), 1335–1348. https://doi.org/10.1016/S0309-1708(02)00058-1
Porporato, A., & Rodriguez-iturbe, I. (2002). Ecohydrology-a challenging multidisciplinary research perspective. Hydrological Sciences Journal, 47(5), 811–821. https://doi.org/10.1080/02626660209492985
Porporato A, Y. J. (2022). Ecohydrology. Dynamics of life and water in the critical zone. Cambridge University Press, New York.
Revenga, C., Brunner, J., Henninger, N., Kassem, K., & Payne, R. (2000). Pilot Ananlysis of Globle Ecosystems: Freshwater Systems.
Rinaldo A, G. M. R.-I. I. (2020). River networks as ecological corridors. Species, populations, pathogens. Cambridge University Press, New York.
Rinaldo, A., & Rodriguez-Iturbe, I. (2022). Ecohydrology 2.0. In Rendiconti Lincei (Vol. 33, Issue 2, pp. 245–270). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s12210-022-01071-y
Rockström, J., & Gordon, L. (2001). Assessment of green water flows to sustain major biomes of the world: Implications for future ecohydrological landscape management. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 26, 843–851. https://doi.org/10.1016/S1464-1909(01)00096-X
Rodriguez-Iturb, I. (2000b). Ecohydrology : A hydrologic perspective of climate-soil-vegetation dynamics are outlined here , and possible Equation : Questions nZr • = I ( s , t ) - E ( s , t ) - L ( s , t ), I • Plants under I • Plants with no stress. Water Resources Research, 36(1), 3–9.
Rodriguez-Iturbe, I., Muneepeerakul, R., Bertuzzo, E., Levin, S. A., & Rinaldo, A. (2009a). River networks as ecological corridors: A complex systems perspective for integrating hydrologic, geomorphologic, and ecologic dynamics. Water Resources Research, 45(1). https://doi.org/10.1029/2008WR007124
Rodriguez-Iturbe I, P. A. (2004). Ecohydrology of water-con- trolled ecosystems. Soil moisture and plant dynamics. Cambridge University Press, New York.
Rodriguez-Iturbe I, P. A. R. L. I. V. C. D. (1999). Probabilistic modelling of water balance at a point: the role of climate, soil and vegetation. Proc R Soc B 455:3789–3805. https:// doi. org/ 10. 1029/ 2020W R0272 82.
Rodriguez-Iturbe, I., & Porporato, A. (2005). Ecohydrology of water-controlled ecosystems: Soil moisture and plant dynamics. In Ecohydrology of Water-Controlled Ecosystems: Soil Moisture and Plant Dynamics (Vol. 9780521819). https://doi.org/10.1017/CBO9780511535727
Rodriguez-Iturbe, I., Porporato, A., Laio, F., & Ridolfi, L. (2001). Plants in water-controlled ecosystems: Active role in hydrologic processes and responce to water stress I. Scope and general outline. Advances in Water Resources, 24(7), 695–705. https://doi.org/10.1016/S0309-1708(01)00004-5
Rodriguez-Iturbe I, R. A. (2001). Fractal river basins. Chance and self-organization. Cambridge University Press, New York.
Tache, A. V., Popescu, O. C., & Petrișor, A. I. (2023). Conceptual Model for Integrating the Green-Blue Infrastructure in Planning Using Geospatial Tools: Case Study of Bucharest, Romania Metropolitan Area. Land, 12(7). https://doi.org/10.3390/land12071432
UNESCO. (2022). Groundwater: Making the invisible visible in 2022 and beyond.
Wagner, I., & Breil, P. (2013). The role of ecohydrology in creating more resilient cities. Ecohydrology and Hydrobiology, 13(2), 113–134. https://doi.org/10.1016/j.ecohyd.2013.06.002
Wilcox, B. P. (2010). Transformative ecosystem change and ecohydrology: Ushering in a new era for watershed management. Ecohydrology, 3(1), 126–130. https://doi.org/10.1002/eco.104
Xia, J., Zhang, Y., Mu, X., Zuo, Q., Zhou, Y., & Zhao, G. (2021). A review of the ecohydrology discipline: Progress, challenges, and future directions in China. Journal of Geographical Sciences, 31(8), 1085–1101. https://doi.org/10.1007/s11442-021-1886-0
Zalewski, M. (1997a). Ecological Foundations for River Management.
Zalewski, M. (2002a). Ecohydrology - The use of ecological and hydrological processes for sustainable management of water resources. Hydrological Sciences Journal, 47(5), 823–832. https://doi.org/10.1080/02626660209492986
Zalewski, M. (2002b). Ecohydrology - The use of ecological and hydrological processes for sustainable management of water resources. Hydrological Sciences Journal, 47(5), 823–832. https://doi.org/10.1080/02626660209492986
Zalewski, M. (2008). Integrated Watershed Management: Ecohydrology & Phytotechnology.
Zalewski, M. (2010). Ecohydrology for compensation of Global Change. Brazilian Journal of Biology = Revista Brasleira de Biologia, 70, 689–695. https://doi.org/10.1590/S1519-69842010000400001
Zalewski, M. (2012). Ecological Modelling for Resource Management.
Zalewski, M., McClain, M., & Eslamian, S. (2016a). New challenges and dimensions of Ecohydrology - Enhancement of catchments sustainability potential. Ecohydrology & Hydrobiology, 16, 1–3. https://doi.org/10.1016/j.ecohyd.2016.01.001
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 30
Number of citations: 0