The oxygen concentration in near-bottom water shapes the structure of macrozoobenthos in the bradymictic Lake Urowiec
DOI:
https://doi.org/10.12775/EQ.2025.014Keywords
bottom fauna, bottom sediments, water dynamics, oxygen concentrationAbstract
This research aimed to study the horizontal changes of macrozoobenthos structure and several abiotic parameters of water and bottom sediments along with increasing depth in the bradymictic Lake Urowiec. The samples were taken on six dates from April to October 2001, almost at monthly intervals, at the following depths: 2.5m, 5m, 7m, 9m, 10m, 11m, 15m, 20m and 30m. The high number of taxa and diversity (Shannon index) of bottom fauna were found only at depths of 2.5m (34 and 1.98, respectively) and 5m (27 and 2.18, respectively). From a depth of 9m, there were almost exclusively Chaoborus sp. larvae. The zoobenthos density decreased with depth from 2247 ind. m-2 at a depth of 2.5m to 200 ind. m-2 at 30m depth. The biomass of bottom fauna ranged from 6.51 g m-2 at a 2.5m depth to 0.43 g m-2 at a depth of 30m. A significant decrease in the diversity and, to a lesser extent, in the abundance of bottom fauna was most likely the consequence of the rapid decline in the water near bottom oxygenation with depth. Starting from a depth of 7 meters and deeper, the average oxygen concentration in the over-bottom water was very low - below 4 mg dm-3.
References
Armitage P.D., Cranston P.S., Pinder L.C.V., 1995, The Chironomidae biology and ecology of non-biting midges, Chapman & Hall, London, 572 pp.
Behrend R.D.L., Takeda A.M., Gomes L.C., Fernandes S.E.P., 2012, Using oligochaeta assemblages as an indicator of environmental changes, Braz. J. Biol. 72 (4): 873-884.
Bek, M.A., Lowndes, I.S., Hargreaves, D.M., Negm, A.M. (2018). Lakes and Their Hydrodynamics. In: Negm, A., Bek, M., Abdel-Fattah, S. (eds) Egyptian Coastal Lakes and Wetlands: Part I. The Handbook of Environmental Chemistry, vol 71. Springer, Cham. https://doi.org/10.1007/698_2018_261
Bittel L., Grimm S., Ochocki S., 1965, The horizontal distribution of zooplankton in the Lake Jeziorak, Zesz. Nauk. UMK 1: 3-19. (in Polish)
Callisto M., Goulart M., Barbosa F.A.R., Rocha O., 2005, Biodiversity assessment of benthic macroinvertebrates along a reservoir cascade in the lower São Francisco river (northeastern Brazil), Braz. J. Biol. 65: 229–240.
Caraco, N.F., Cole, J.J., 2002, Contrasting impacts of a native and alien macrophyte on dissolved oxygen in a large river, Ecol. Appl. 12: 1496-1509.
Ciutat A., Weber O., Gerino M., Boudou A., 2006, Stratigraphic effects of tubificids in freshwater sediments: a kinetic study based on X-ray images and grain-size analysis, Acta Oecologica 30(2): 228-237.
Clements W.H., Kiffney P.M., 1993, Assessing contaminant effects at higher levels of biological organisation, Environ. Toxicol. Chem. 13: 357–359.
Cooper C.M., Knight L.A., 1985, Macrobenthos - sediment relationships in Ross Barnett Reservoir, Mississippi, Hydrobiologia 126: 193-197.
Declerck S., Vandekerkhove J., Johansson L. and others, 2005, Multi-group biodiversity in shallow lakes along gradients of phosphorus and water plant cover, Ecology 86: 1905-1915.
Dos Santos N.C.L., de Santana H.S., Dias R.M., Borges H.L.F., de Melo V.F., Severi W., Gomes L.C., Agostinho A.A., 2016, Distribution of benthic macroinvertebrates in a tropical reservoir cascade, Hydrobiologia 765: 265-275.
Graneli W., 1979, The influence of Chironomus plumosus larvae on the oxygen uptake of sediment, Arch. Hydrobiol. 87: 385-403.
Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica, 4(1): 1-9. http://palaeo-electronica.org/2001_1/past/issue1_01.htm
Hargeby A., Andersson G., Blindow I., Johansson S., 1994, Trophic web structure in a shallow lake during a dominance shift from phytoplankton to submerged macrophytes, Hydrobiologia 279/280: 83-90.
Hellawell J.M., 1986, Biological indicators of freshwater pollution and environmental management, Elsevier, London, 546 pp.
Kajak Z., 1998, Hydrobiologia – Limnologia. Ekosystemy wód śródlądowych, PWN, Warszawa (in Polish).
Kentzer A., 2001, Fosfor i jego biologicznie dostępne frakcje w osadach jezior różnej trofii, Rozprawa habilitacyjna, UMK, Toruń, 111 pp. (in Polish)
Kubiak J., Machula S., 2013, Water thermal regimes in selected antropogenic resorvoirs in Western Pomerania. Oceanological and Hydrobiological Studies 42: 155–163.
Nieto C., Ovando X.M.C., Loyola R., Izquierdo A., Romero F., Molineri C., Rodríguez J., Martín P. R., Fernández H., Manzo V., Miranda M.J., 2017, The role of macroinvertebrates for conservation of freshwater systems. Ecol Evol. 7: 5502–5513.
Nyman M., Korhola A., Brooks S.J., 2005, The distribution and diversity of Chironomidae (Insecta: Diptera) in western Finnish Lapland, with special emphasis on shallow lakes, Global Ecol. Biogeogr. 14: 137-153.
Ozkan N., 2024. Roles of benthic macroinvertebrates in the food web. Proceedings of VI. International Agricultural, Biological & Life Science Conference, Edirne, Turkey:184-193.
Petridis D., Sinis A., 1997, The benthic fauna of Lake Mikri Prespa, Hydrobiologia 351: 95-105.
Phipps G.L., Mattson V.R., Ankley G.T., 1995, Relative sensitivity of three freshwater benthic macroinvertebrates to ten contaminants, Arch. Environ. Con. Tox. 28: 281–286.
Prat N., Real M., Rieradevall M., 1992, Benthos of spanish lakes and reservoirs, Limnetica 8: 221-229.
Raczyńska M., Kubiak J., 2003, Warunki hydrochemiczne jezior Szczecińskiego Parku Krajobrazowego „Puszcza Bukowa”, Acta Sci. Pol., Piscaria 2(2)2003: 97-116 (in Polish).
Rasmussen J.B., 1988, Littoral zoobenthic biomass in lakes, and its relationship to physical, chemical and trophic factors, Can. J. Fish. Aquat. Sci. 45: 1436-1447.
Real M., Prat N., 1991, Changes in the benthos of five Spanish reservoirs in the last 15 years, Verh. Internat. Verein. Limnol. 24: 1377-1381.
Reynoldson T.B., Bailey R.C., Day K.E., Norris R.H., 1995, Biological guidelines for freshwater sediment based on BEnthic Assessment of SedimenT (BEAST) using a multivariate approach for predicting biological state, Aust. J. Ecol. 20: 198–219.
Risnoveanu G.,Vadineanu A., 2002, Observations on the population dynamics of Potamothrix hammoniensis (Michaelsen, 1901) (Tubificidae, Oligochaeta) in Lake Isacova, in the Danube Delta, Hydrobiologia 479: 23-30.
Rodriguez P., Martinez M.M., Arrate J.A., Navarro E., 2001, Selective feeding by the aquatic oligochaete Tubifex tubifex (Tubificidae, Clitellata), Hydrobiologia 463: 133-140.
Scheffer M., 1998, Ecology of shallow lakes, Chapman and Hall, London, 357 pp.
Severiano S., Lima E.R.P., Lucena-Silva D., Rocha D.K.G., Verissimo M.E.S., Figueiredo B.R.S., Barbosa J.E.L. and Molozzi J., 2023. The role of bioturbation triggered by benthic macroinvertebrates in the effectiveness of the Floc & Lock technique in mitigating eutrophication. Water Research 246; https://doi.org/10.1016/j.waters.2023.120691
Svensson J.M., Leonardson L., 1996, Effects of bioturbation by tube-dwelling chironomids larvae on oxygen uptake and denitrification in eutrophic lake sediments, Freshwater Biol. 35: 289-300.
Tolkamp H.H., 1980, Organism-substrate relationship in lowland streams, Thesis Agricultural University Wageningen, The Netherlands, 211 pp.
Żbikowski J., Kobak J., Żbikowska E., 2010, Is Nuphar lutea (L.) Sm. a structuring factor for macrozoobenthos and selected abiotic parameters of water and bottom sediments throughout the year? Aquat. Ecol. 44(4): 709-721.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Janusz Żbikowski, Katarzyna Łapkiewicz

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 14
Number of citations: 0