Bacterial secondary metabolites as promising “green” microbiologically influenced corrosion inhibitors/biocides: a review
DOI:
https://doi.org/10.12775/EQ.2025.009Keywords
“green” inhibitors/biocides, heterotrophic bacteria, microbiologically influenced corrosion , microbial secondary metabolites, sulfate-reducing bacteriaAbstract
A number of ecological, economic and medical problems arise as a result of damage to building materials by various groups of microorganisms (microbiologically influenced corrosion), as well as due to the treatment of these materials with toxic chemical biocides/inhibitors. Artificial addition of “green” biocides/inhibitors (in particular, of secondary metabolites of heterotrophic bacteria) into corrosive environments is considered as a promising approach to avoid such problems. This review is an attempt to summarize the information on the possibilities of using microbial secondary metabolites as “green” inhibitors/biocides of microbiologically influenced corrosion. The information on the anticorrosive, antimicrobial and/or antibiofilm activity of the secondary metabolites of microorganisms (antibiotics, lipopeptides, exopolysaccharides, siderophores) as well as metallic nanoparticles biosynthesized and conjugated with bacterial secondary metabolites as promising biocides/inhibitors of microbiologically influenced corrosion to protect materials from microbial deterioration, and further prospects of this approach are analyzed. It is emphasized that the inhibition of microbiologically influenced corrosion processes with the help of secondary metabolites is an environmentally safe approach that can be considered from four interrelated points of view: corrosion inhibitors, antimicrobial compounds, antibiofilm compounds, regulators of microbial corrosively active groups.
References
Abirami M. & Kannabiran K., 2016, Streptomyces ghanaensis VITHM1 mediated green synthesis of silver nanoparticles: Mechanism and biological applications. Front. Chem. Sci. Eng. 10: 542–551. Doi:10.1007/s11705-016-1599-6
Alam A., Tanveer F., Khalil A.T., Zohra T., Khamlich S., Alam M.M., Salman M., Ali M., Ikram A., Shinwari Z.K. & Maaza M., 2021, Silver nanoparticles biosynthesized from secondary metabolite producing marine actinobacteria and evaluation of their biomedical potential. Antonie van Leeuwenhoek 114(10): 1497–1516. Doi:10.1007/s10482-021-01616-5
Appleyard A.N., Choi S., Read D.M., Lightfoot A., Boakes S., Hoffmann A., Chopra I., Bierbaum G., Rudd B.A., Dawson M.J. & Cortes J., 2009, Dissecting structural and functional diversity of the lantibiotic mersacidin. Chem. Biol. 16(5): 490–498.
Apte M., Girme G., Nair R.V., Bankar A.V., Kumar A.R. & Zinjarde S.S., 2013, Melanin mediated synthesis of gold nanoparticles by Yarrowia lipolytica. Mater. Lett. 95: 149–152.
Andreiuk K.I., Kozlova I.P., Koptieva Zh.P., Piliashenko-Novokhatnyi A.I., Zanina V.V. & Purish L.M., 2005, Mikrobna koroziia pidzemnykh sporud [Microbial Corrosion of Underground Structures], Kyiv, Naukova Dumka: 258 (in Ukrainian).
Arrieta E.C., Valdez B., Carrillo M., Curiel M., Mateos F., Ramos R., Rosas N. & Bastidas J.M., 2017, Silver nanoparticles biosynthesized by secondary metabolites from Moringa oleifera stem and their antimicrobial properties. African Journal of Biotechnology 16: 400–407.
Ashraf M.A., Ullah S., Ahmad I., Qureshi A.K., Balkhair K.S. & Abdur Rehman M., 2014, Green biocides, a promising technology: current and future applications to industry and industrial processes. J. Sci. Food Agric. 94(3): 388–403. Doi:10.1002/jsfa.6371
Bahrulolum H., Nooraei S., Javanshir N., Tarrahimofrad H., Mirbagheri V.S., Easton A.J. & Ahmadian G., 2021, Green synthesis of metal nanoparticles using microorganisms and their application in the agrifood sector. J. Nanobiotechnol. 19, 86. Doi:10.1186/s12951-021-00834-3.
Balderas-Ruíz K.A., Bustos P., Santamaria R.I., González V., Cristiano-Fajardo S.A., Barrera-Ortíz S., Mezo-Villalobos M., Aranda-Ocampo S., Guevara-García Á.A., Galindo E. & Serrano-Carreón L., 2020, Bacillus velezensis 83 a bacterial strain from mango phyllosphere, useful for biological control and plant growth promotion. AMB Express 10(1), 163.
Beale D.J., Karpe A.V., Jadhav S., Muster T.H. & Palombo E.A., 2015, Omics-based approaches and their use in the assessment of microbial-influenced corrosion of metals. Corrosion Reviews 34(1-2): 1–15. Doi:10.1515/corrrev-2015-0046
Beech I.B. & Gaylarde Ch.C., 1999, Recent advances in the study of biocorrosion: an overview. Rev. Microbiol. 30(3): 117–190.
Bonifay V., Wawrik B., Sunner J., Snodgrass E.C., Aydin E., Duncan K.E., Callaghan A.V., Oldham A., Liengen T. & Beech I., 2017, Metabolomic and Metagenomic Analysis of Two Crude Oil Production Pipelines Experiencing Differential Rates of Corrosion. Front. Microbiol. 8, 99. Doi:10.3389/fmicb.2017.00099
Brötz H., Bierbaum G., Leopold K., Reynolds P.E. & Sahl H.G., 1998, The lantibiotic mersacidin inhibits peptidoglycan synthesis by targeting lipid II. Antimicrob. Agents Chemother. 42: 154–160.
Butcher R.A., Schroeder F.C., Fischbach M.A., Straight P.D., Kolter R., Walsh C.T. & Clardy J., 2007, The identification of bacillaene, the product of the PksX megacomplex in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 104(5): 1506–1509.
Caldeira A.T., 2021, Green mitigation strategy for cultural heritage using bacterial biocides, [in:] Microorganisms in the deterioration and preservation of cultural heritage, E. Joseph (ed.), Springer, Cham: 137–154. Doi:10.1007/978-3-030-69411-1_6
Chen X.H., Scholz R., Borriss M., Junge H., Mögel G., Kunz S. & Borriss R., 2009, Difficidin and bacilysin produced by plant-associated Bacillus amyloliquefaciens are efficient in controlling fire blight disease. J. Biotechnol. 140(1–2): 38–44.
Chojniak J., Libera M., Król E. & Płaza G., 2018, A nonspecific synergistic effect of biogenic silver nanoparticles and biosurfactant towards environmental bacteria and fungi. Ecotoxicology (London, England) 27(3): 352–359. Doi:10.1007/s10646-018-1899-3
Chowdhury S.P., Hartmann A., Gao X.W. & Borriss R., 2015, Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42 - a review. Front. Microbiol. 6, 780.
Cueva C., Moreno-Arribas M.V., Martín-Alvarez P.J., Bills G., Vicente M.F., Basilio A., Rivas C.L., Requena T., Rodríguez J.M. & Bartolomé B., 2010, Antimicrobial activity of phenolic acids against commensal, probiotic and pathogenic bacteria. Research in microbiology 161(5): 372–382. Doi:10.1016/j.resmic.2010.04.006
Di Martino P., 2022, Antimicrobial agents and microbial ecology. AIMS Microbiology 8(1): 1–4. Doi: 10.3934/microbiol.2022001
Donlan R.M., 2002, Biofilms: microbial life on surfaces. Emerging Infectious Diseases 8(9): 881–890. Doi:10.3201/eid0809.020063
Dunlap C.A., Kim S.-J., Kwon, S.-W. & Rooney A.P., 2016, Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp. plantarum and ‘Bacillus oryzicola’ are later heterotypic synonyms of Bacillus velezensis based on phylogenomics. Int. J. Syst. Evol. Microbiol. 66: 1212–1217.
Fawzy A., Al Bahir A., Alqarni N., Toghan A., Khider M., Ibrahim I.M., Abulreesh H.H. & Elbanna K., 2023, Evaluation of synthesized biosurfactants as promising corrosion inhibitors and alternative antibacterial and antidermatophytes agents. Scientific Reports 13, 2585. Doi: 10.1038/s41598-023-29715-5
Fazle Rabbee M. & Baek K-H., 2020, Antimicrobial activities of lipopeptides and polyketides of Bacillus velezensis for agricultural applications. Molecules 25(21), 4973.
Finkenstadt V.L., Bucur C.B., Ĉoté G.L. & Evans K.O., 2017, Bacterial exopolysaccharides for corrosion resistance on low carbon steel. Journal of Applied Polymer Science 134, 45032.
Flemming H.-C., Wingender J., Griebe Th., Mayer Ch., 2000, Physico-Chemical Properties of Biofilms, [in:] Biofilms: Recent Advances in their Study and Control, L.V. Evans (ed.), CRC Press: 20.
Folvarska V., Thomson S. M., Lu Z., Adelgren M., Schmidt A., Newton R. J., Wang Y., McNamara P. J., 2024, The effects of lead, copper, and iron corrosion products on antibiotic resistant bacteria and antibiotic resistance genes. Environmental Science Advances 3, 808. Doi:10.1039/d4va00026a
Fouda A.S., Shalabi K. & E-Hossiany A., 2016, Moxifloxacin antibiotic as green corrosion inhibitor for carbon steel in 1 M HCl. J. Bio Tribo Corros. 2, 18. Doi:10.1007/s40735-016-0048-x
Fraud S., Rees E. L., Mahenthiralingam E., Russell A.D. & Maillard J.-Y., 2003, Aromatic alcohols and their effect on Gram-negative bacteria, cocci and mycobacteria. Journal of Antimicrobial Chemotherapy 51(6): 1435–1436. Doi:10.1093/jac/dkg246
Gahlawat G. & Choudhury A.R., 2019, A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC advances 9(23): 12944–12967. Doi:10.1039/c8ra10483b
Ganesh K.C., Mamidyala S.K., Das B., Sridhar B., Devi G.S. & Karuna M.L., 2010, Synthesis of biosurfactant-based silver nanoparticles with purified rhamnolipids isolated from Pseudomonas aeruginosa BS-161R. J. Microbiol. Biotechnol. 20: 1061–1068.
Garry P., Vendeuvre J.L. & Bellon-Fontaine M.N., 1998, Surface properties and adhesion of Bacillus cereus and Bacillus subtilis to polyurethane - influence of growth temperature. J. Disper. Sci. Technol. 19: 1175–1197.
Ghosal J. & Lavanya M., 2023, Inhibition of Microbial Corrosion by Green Inhibitors: An Overview. Iran. J. Chem. Chem. Eng. 42(2): 684–703. Doi: 10.30492/IJCCE.2022.539832.4950
Guilger-Casagrande M. & de Lima R., 2019, Synthesis of silver nanoparticles mediated by fungi: a review. Front. Bioeng. Biotechnol. 7, 287. Doi:10.3389/fbioe.2019.00287
Guimarães A.C., Meireles L.M., Lemos M.F., Guimarães M.C.C., Endringer D.C., Fronza M. & Scherer R., 2019, Antibacterial activity of terpenes and terpenoids present in essential oils. Molecules 24(13), 2471. Doi:10.3390/molecules24132471
Hazra C., Kundu D., Chaudhari A. & Jana T., 2013, Biogenic synthesis, characterization, toxicity and photocatalysis of zinc sulphide nanoparticles using rhamnolipids from Pseudomonas aeruginosa BS01 as capping and stabilizing agent. J. Chem. Technol. Biotechnol. 88: 1039–1048.
Ignatova-Ivanova T. & Ivanov R., 2016, Exopolysaccharides from lactic acid bacteria as corrosion inhibitors. Acta Scientifica Naturalis 3(1): 52–60. Doi: 10.1515/asn-2016-0008
Javaherdashti R. & Alasvand K., 2019, Biological Treatment of Microbial Corrosion: Opportunities and Challenges, 1st ed.; Elsevier Science, Saint Louis: 156 pp.
Jayaraman A., Earthman J. C. & Wood T.K., 1997, Corrosion inhibition by aerobic biofilms on SAE 1018 steel. Appl. Microbiol. Biotechnol. 47: 62–68.
Jayaraman A., Mansfeld F.B. & Wood T.K., 1999a, Inhibiting sulfate-reducing bacteria in biofilms by expressing the antimicrobial peptides indolicidin and bactenecin. J. Ind. Microbiol. Biotechnol. 22: 167–175.
Jayaraman A., Hallock P.J., Carson R.M., Lee C.C., Mansfeld F.B. & Wood T.K., 1999b, Inhibiting sulfate-reducing bacteria in biofilms on steel with antimicrobial peptides generated in situ. Appl. Microbiol. Biotechnol. 52: 267–275.
Kalyon B., Helaly S.E., Scholz R., Nachtigall J., Vater J., Borriss R. & Süssmuth R.D., 2011, Plantazolicin A and B: structure elucidation of ribosomally synthesized thiazole/oxazole peptides from Bacillus amyloliquefaciens FZB42. Org. Lett. 13(12): 2996–2999.
Kamaruzaman N.H., Mohd Noor, N.N., Radin Mohamed R., Al-Gheethi A., Ponnusamy S.K., Sharma A. & Vo D.N., 2022, Applicability of bio-synthesized nanoparticles in fungal secondary metabolites products and plant extracts for eliminating antibiotic-resistant bacteria risks in non-clinical environments. Environ. Res. 209, 112831. Doi:10.1016/j.envres.2022.112831
Kamel M.M., Mohsen Q., Anwar Z.M. & Sherif M.A., 2021, An expired ceftazidime antibiotic as an inhibitor for disintegration of copper metal in pickling HCl media. J. Mater. Res. Technol. 11: 875–886.
Kasture M., Singh S., Patel P., Joy P.A., Prabhune A.A., Ramana C.V. & Prasad B.L.V., 2007, Multiutility sophorolipids as nanoparticle capping agents: Synthesis of stable and water dispersible Co nanoparticles. Langmuir 23: 11409–11412.
Khan R., Shen F., Khan K., Liu L.X., Wu H.H., Luo J.Q. & Wan Y.H., 2016, Biofouling control in membrane filtration system by newly isolated novel quorum quenching bacterium, Bacillus methylotrophicus sp. WY. RSC Adv. 6: 28895–28903.
Khan M.S., Yang C., Zhao Y., Pan H., Zhao J., Shahzad M.B., Kolawole S.K., Ullah I. & Yang K., 2020, An induced corrosion inhibition of X80 steel by using marine bacterium Marinobacter salsuginis. Colloids Surf. B Biointerfaces 189, 110858.
Kiran G.S., Sabu A. & Selvin J., 2010, Synthesis of silver nanoparticles by glicololid biosurfactant produced from marine Brevibacterium. casei MSA 19. J. Biotechnol. 148: 221–225.
Kondrashevska K.R., Kliuchka I.V., Pyroh T.P. & Penchuk Yu.M., 2018, Rozmaittia mikrobnykh vtorynnykh metabolitiv [Diversity of microbial secondary metabolites]. Scientific works of the National University of Food Technologies. 24(5): 44–60. http://nbuv.gov.ua/UJRN/Npnukht_2018_24_5_8 (in Ukrainian)
Korenblum E., de Araujo L.V., Guimarães C.R., de Souza L.M., Sassaki G., Abreu F., Nitschke M., Lins U., Freire D.M.G., Barreto-Bergter E. & Seldin L., 2012, Purification and characterization of a surfactin-like molecule produced by Bacillus sp. H2O-1 and its antagonistic effect against sulfate reducing bacteria. BMC Microbiol. 12, 252.
Kruszewska D., Sahl H.G., Bierbaum G., Pag U., Hynes S.O. & Ljungh A., 2004, Mersacidin eradicates methicillin-resistant Staphylococcus aureus (MRSA) in a mouse rhinitis model. J. Antimicrob. Chemother. 54(3): 648–653.
Kumar G.G. & Mamidyala S.K., 2011, Extracellular synthesis of silver nanoparticles using culture supernatant of Pseudomonas aeruginosa. Colloids Surf. B Biointerfaces 84: 462–466.
Kumari R., Barsainya M. & Singh D.P., 2017, Biogenic synthesis of silver nanoparticle by using secondary metabolites from Pseudomonas aeruginosa DM1 and its anti-algal effect on Chlorella vulgaris and Chlorella pyrenoidosa. Environ. Sci. Pollut. Res. 24(5): 4645–4654. Doi:10.1007/s11356-016-8170-3
Lamb A.L., 2015, Breaking a pathogen’s iron will: Inhibiting siderophore production as an antimicrobial strategy. Biochim. Biophys. Acta 1854: 1054–1070.
Lan X., Zhang J., Wang Z., Zhang R., Sand W., Zhang L., Duan J., Zhu Q. & Hou B., 2022, Corrosion of an AZ31B magnesium alloy by sulfate-reducing prokaryotes in a mudflat environment. Microorganisms 10, 839. Doi:10.3390/microorganisms10050839
Lavanya M., 2021, A brief insight into microbial corrosion and its mitigation with eco-friendly inhibitors. J. Bio Tribo Corros. 7, 125. Doi:10.1007/s40735-021-00563-y
Little B. & Mansfeld F., 1995, Passivity of stainless steels in natural seawater, [in:] Proceedings of the H.H. Uhlig Memorial Symposium, F. Mansfeld, A. Asphahani, H. Bohni, R. Latansion (eds), The Electrochemical Society, Inc., Pennington, Vol. 94: 42–52.
Little B.J., Lee J.S. & Ray R.I., 2008, The influence of marine biofilms on corrosion: a concise review. Electrochim. Acta 54: 2–7.
Little B.J., Blackwood D.J., Hinks J., Lauro F.M., Marsili E., Okamoto A., Wade S.A. & Flemming H.-C., 2020, Microbially influenced corrosion – any progress? Corrosion Science 108641. Doi:10.1016/j.corsci.2020.108641
Liu Y., Dai C., Zhou Y., Qiao J., Tang B., Yu W., Zhang R., Liu Y. & Lu S.E., 2021, Pyoverdines are essential for the antibacterial activity of Pseudomonas chlororaphis YL-1 under low-iron conditions. Appl. Environ. Microbiol. 87(7), e02840-20. Doi:10.1128/AEM.02840-20
Liu H.X., Wang Y.S., Jin Z.Y., Zheludkevich M.L., Liu H.F., Fan S.J. & Liu H.W., 2024, New insight into the mitigation strategy of microbiologically influenced corrosion caused by anaerobic microbial consortium based on resource conversion of obsolete antibiotics. Corros. Sci. 237, 112292. Doi: 10.1016/j.corsci.2024.112292
Lucchini J.J., Corre J. & Cremieux A., 1990, Antibacterial activity of phenolic compounds and aromatic alcohols. Res. Microbiol. 141(4): 499–510. Doi:10.1016/0923-2508(90)90075-2
Luo C., Chen Y., Liu X., Wang X., Wang X., Li X., Zhao Y. & Wei L., 2019, Engineered biosynthesis of cyclic lipopeptide locillomycins in surrogate host Bacillus velezensis FZB42 and derivative strains enhance antibacterial activity. Appl. Microbiol. Biotechnol. 103(11): 4467–4481.
Mahizan N.A., Yang S.K., Moo C.L., Song A.A., Chong C.M., Chong C.W., Abushelaibi A., Lim S.E. & Lai K.S., 2019, Terpene derivatives as a potential agent against antimicrobial resistance (AMR) pathogens. Molecules 24(14), 2631. Doi:10.3390/molecules24142631
Malik M.A., Hashim M.A., Nabi F., AL-Thabaiti Sh.A. & Khan Z., 2011, Anti-corrosion ability of surfactants: a review. Int. J. Electrochem. Sci. 6: 1927–1948.
Marchal R., 1999, Rôle des bacteriés sulfurogènes dans la corrosion du fer. Oil and Gas Sci. and Techn.: Rev. Inst.fr.petrole. 54(5): 649–659.
Marslin G., Siram K., Maqbool Q., Selvakesavan R.K., Kruszka D., Kachlicki P. & Franklin G., 2018, Secondary metabolites in the green synthesis of metallic nanoparticles. Materials 11(6), 940. Doi:10.3390/ma11060940
McCafferty E. & McArdle J.V., 1995, Corrosion inhibition of iron in acid solutions by biological siderophores. J. Electrochem. Soc. 142: 1447–1453.
Meena K.R. & Kanwar S.S., 2015, Lipopeptides as the antifungal and antibacterial agents: applications in food safety and therapeutics. Biomed. Res. Int. 2015, 473050. Doi:10.1155/2015/473050
Mendrek B., Chojniak J., Libera M., Trzebicka B., Bernat P., Paraszkiewicz K. & Płaza G., 2017, Silver nanoparticles formed in bio- and chemical syntheses with biosurfactant as the stabilizing agent. J. Disper. Sci. Technol. 38(11): 1647–1655, Doi:10.1080/01932691.2016.1272056
Messaoudi O. & Bendahou M., 2020, Biological synthesis of nanoparticles using endophytic microorganisms: current development, [in:] Nanotechnology and the Environment, M. Sen (ed.), IntechOpen. Doi:10.5772/intechopen.93734
Michalak I. & Chojnacka K., 2014, Biocides, [in:] Encyclopedia of Toxicology (Third Edition), Philip Wexler (ed.), Academic Press, Bethesda: 461–463. Doi:10.1016/B978-0-12-386454-3.00472-3
Molnár Z., Bódai V., Szakacs G., Erdélyi B., Fogarassy Z., Sáfrán G., Varga T., Kónya Z., Tóth-Szeles E., Szűcs R. & Lagzi I., 2018, Green synthesis of gold nanoparticles by thermophilic filamentous fungi. Sci. Rep. 8(1), 3943. Doi:10.1038/s41598-018-22112-3
Mongkolthanaruk W., 2012, Classification of Bacillus beneficial substances related to plants, humans and animals. J. Microbiol. Biotechnol. 22(12): 1597–604.
Moradi M., Song Z. & Xiao T., 2018, Exopolysaccharide produced by Vibrio neocaledonicus sp as a green corrosion inhibitor: Production and structural characterization. J. Mater. Sci. Technol. 34: 2447–2457.
Narayanan J., Ramji R., Sahu H. & Gautam P., 2010, Synthesis, stabilization and characterization of rhamnolipid-capped ZnS nanoparticles in aqueous medium. IET Nanotechnol. 4: 29–34.
NCBI, 2019, Taxonomy [online]. Website https://www.ncbi.nlm.nih.gov/Taxonomy/ [Accessed 15 November 2019]
Noman E., Al-Gheethi A., Talip B.A., Mohamed R. & Kassim A.H., 2019, Inactivating pathogenic bacteria in greywater by biosynthesized Cu/Zn nanoparticles from secondary metabolite of Aspergillus iizukae: optimization, mechanism and techno economic analysis. PloS one 14(9), e0221522. Doi:10.1371/journal.pone.0221522
Okon N.E., 2010, Fermentation product of Streptomyces griseus (albomycin) as a green inhibitor for the corrosion of zinc in H2SO4. Green Chem. Lett. Rev. 3(4): 307–314.
Ornek D., Jayaraman A., Syrett B.C., Hsu C.H., Mansfeld F.B. & Wood T.K., 2002, Pitting corrosion inhibition of aluminum 2024 by Bacillus biofilms secreting polyaspartate or g-polyglutamate. Appl. Microbiol. Biotechnol. 58: 651–657.
Özcengiz G. & Öğülür İ., 2015, Biochemistry, genetics and regulation of bacilysin biosynthesis and its significance more than an antibiotic. N. Biotechnol. 32(6): 612–619.
Pacheco da Rosa J., Korenblum E., Franco-Cirigliano M.N., Abreu F., Lins U., Soares R.M.A., Macrae A., Seldin L. & Coelho R.R.R., 2013, Streptomyces lunalinharesii strain 235 shows the potential to inhibit bacteria involved in biocorrosion processes. Hindawi Publishing Corporation BioMed Research International 2013, Article ID 309769.
Palanisamy P., 2008, Biosurfactant mediated synthesis of NiO nanorods. Mater. Lett. 62: 743–746.
Palanisamy P. & Raichur A.M., 2009, Synthesis of spherical NiO nanoparticles through a novel biosurfactant mediated emulsion technique. Mater. Sci. Eng. 29: 199–204.
Pan H.Q., Li Q.L. & Hu J.C., 2017, The complete genome sequence of Bacillus velezensis 9912D reveals its biocontrol mechanism as a novel commercial biological fungicide agent. J. Biotechnol. 247: 25–28.
Paraszkiewicz K., Moryl M., Płaza G., Bhagat D., Satpute S.K. & Bernat P., 2021, Surfactants of microbial origin as antibiofilm agents. IJEHR 31(4): 401–420. Doi:10.1080/09603123.2019.1664729
Patil S., Sastry M. & Bharde A., 2022, Size and shape directed novel green synthesis of plasmonic nanoparticles using bacterial metabolites and their anticancer effects. Front. Microbiol. 13, 866849. Doi:10.3389/fmicb.2022.866849
Pérez-Miranda S., Zamudio-Rivera L.S., Cisneros-Dévora R., George-Téllez R. & Fernández F.J., 2020, Theoretical insight and experimental elucidation of desferrioxamine B from Bacillus sp. AS7 as a green corrosion inhibitor. Corros. Eng. Sci. Technol. 56: 93–101.
Płaza G.A., Chojniak J. & Banat I.M., 2014, Biosurfactant mediated biosynthesis of selected metallic nanoparticles. Int. J. Mol. Sci. 15(8): 13720–13737. Doi:10.3390/ijms150813720
Płaza G.A., Chojniak J., Mendrek B., Trzebicka B., Kvitek L., Panacek A., Prucek R., Zboril R., Paraszkiewicz K. & Bernat P., 2016, Synthesis of silver nanoparticles by Bacillus subtilis T-1 growing on agro-industrial wastes and producing biosurfactant. IET nanobiotechnology 10(2): 62–68. Doi:10.1049/iet-nbt.2015.0016
Płaza G. & Achal V., 2020, Biosurfactants: eco-friendly and innovative biocides against biocorrosion. Int. J. Mol. Sci. 21, 2152. Doi:10.3390/ijms21062152
Purish L.M. & Asaulenko L.G., 2007, Dynamics of succession changes in sulfidogenic microbial association under conditions of biofilm formation on the surface of steel. Mikrobiol. Z. 69(6): 19–25.
Purwasena I.A., Astuti D.I., Fauziyyah, N.A., Putri D.A.S. & Sugai Y., 2019, Inhibition of microbial influenced corrosion on carbon steel ST37 using biosurfactant produced by Bacillus sp. Mater. Res. Express. 6, 115405.
Rajala P., 2017, Microbially-induced corrosion of carbon steel in a geological repository environment. Doctoral dissertation (article-based) [online]. Julkaisija-Utgivare Publisher, Helsinki: 86 pp. Website http://urn.fi/URN:ISBN:978-951-38-8544-1 [Accessed 31 July 2022]
Raji El Feghali P.A. & Nawas T., 2018, Pyocyanin: a powerful inhibitor of bacterial growth and biofilm formation. Madridge J. Case Rep. Stud. 3(1): 101–107. Doi:10.18689/mjcrs-1000125
Rani B.E. & Basu B.J., 2012, Green Inhibitors for Corrosion Protection of Metals and Alloys: An Overview. Int. J. Corros. 2012: 1–15. Doi:10.1155/2012/380217
Reddy A.S., Chen C.Y., Chen C.C., Jean J.S., Fan C.W., Chen H.R., Wang J.C. & Nimje V.R., 2009, Synthesis of gold nanoparticles via an environmentally benign route using a biosurfactant. J. Nanosci. Nanotechnol. 9: 6693–6699.
Rosa J.P., Tibúrcio S.R., Marques J.M., Seldin L. & Coelho R.R., 2016, Streptomyces lunalinharesii 235 prevents the formation of a sulfate-reducing bacterial biofilm. Braz. J. Microbiol. 47(3): 603–609. Doi:10.1016/j.bjm.2016.04.013
Royani A., Verma C., Hanafi M. & Manaf A., 2023, Green synthesized plant-based metallic nanoparticles for antimicrobial and anti-corrosion applications. Prog. Phys. Met. 24(1): 197–221. https://doi.org/10.15407/ufm.24.01.197
Sahl H.G. & Bierbaum G., 1998, Lantibiotics: biosynthesis and biological activities of uniquely modified peptides from gram-positive bacteria. Annu. Rev. Microbiol. 52: 41–79.
Saikia J.P., Bharali P. & Konwar B.K., 2013, Possible protection of silver nanoparticles against salt by using rhamnolipid. Colloids Surf. B Biointerfaces 104: 330–332.
Scarascia G., Wang T. & Hong P.-Y., 2016, Quorum sensing and the use of quorum quenchers as natural biocides to inhibit sulfate-reducing bacteria. Antibiotics 5/4(39): 1–20. Doi:10.3390/antibiotics5040039
Shakerifard P., Gancel F., Jacques P. & Faille C., 2009, Effect of different Bacillus subtilis lipopeptides on surface hydrophobicity and adhesion of Bacillus cereus 98/4 spores to stainless steel and Teflon. Biofouling 25: 533–541.
Sharma A., Sagar A., Rana J. & Rani R., 2022, Green synthesis of silver nanoparticles and its antibacterial activity using fungus Talaromyces purpureogenus isolated from Taxus baccata Linn. Micro and Nano Syst. Lett. 10: 1–12. Doi:10.1186/s40486-022-00144-9
Sharrar A.M., Crits-Christoph A., Méheust R., Diamond S., Starr E.P. & Banfield J.F., 2020, Bacterial secondary metabolite biosynthetic potential in soil varies with phylum, depth, and vegetation type. mBio 11(3), e00416-20. Doi:10.1128/mBio.00416-20
Shehata O.S., Korshed L.A. & Attia A., 2018, Green Corrosion Inhibitors, Past, Present, and Future, [in:] Corrosion Inhibitors, Principles and Recent Applications, M. Aliofkhazraei (ed.), IntechOpen. Doi:10.1080/01694243.2022.2082746
Shukla S.K., Singh A.K., Ahamad I. & Quraishi M.A., 2009, Streptomycin: A commercially available drug as corrosion inhibitor for mild steel in hydrochloric acid solution. Mater. Lett. 63: 819–822.
Silva F.J., Ferreira L.C., Campos V.P., Cruz-Magalhães V., Barros A.F., Andrade J.P., Roberts D.P. & de Souza J.T., 2019, Complete genome sequence of the biocontrol agent Bacillus velezensis UFLA258 and its comparison with related species: diversity within the commons. Genome Biol. Evol. 11(10): 2818–2823.
Silva M., Rosado T., Teixeira D., Candeias A. & Caldeira A.T., 2017, Green mitigation strategy for cultural heritage: bacterial potential for biocide production. Environ. Sci. Pollut. Res., 24(5): 4871–4881. Doi:10.1007/s11356-016-8175-y
Singh J., Dutta T., Kim K.H., Rawat M., Samddar P. & Kumar P., 2018, “Green” synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J. Nanobiotechnology 16, 84. Doi: 10.1186/s12951-018-0408-4
Singh V.K., Mishra A. & Jha B., 2019, 3-Benzyl-Hexahydro-Pyrrolo[1,2-a]Pyrazine-1,4-Dione extracted from Exiguobacterium indicum showed anti-biofilm activity against Pseudomonas aeruginosa by attenuating quorum sensing. Front. Microbiol. 10, 1269. Doi: 10.3389/fmicb.2019.01269
Sivakumar D., Ramasamy R., Thiagarajan Y., Thirumalairaj B., Krishnamoorthy U., Haque Siddiqui M., Lakshmaiya N., Kumar A. & Shah M., 2024, Biosurfactants in biocorrosion and corrosion mitigation of metals: An overview. Open Chem. 22(1): 20240036. Doi:10.1515/chem-2024-0036
Skoglund S., Blomberg E., Wallinder I.O., Grillo I., Pedersen J.S. & Bergström L.M., 2017, A novel explanation for the enhanced colloidal stability of silver nanoparticles in the presence of an oppositely charged surfactant. Phys. Chem. Chem. Phys. 19(41): 28037–28043. Doi:10.1039/c7cp04662f
Sudarsan S., Kumar Shankar M.K., Kumar Belagal Motatis A.K.B., Shankar S., Krishnappa D., Mohan C.D., Rangappa K.S., Gupta V.K. & Siddaiah C.N., 2021, Green synthesis of silver nanoparticles by Cytobacillus firmus isolated from the stem bark of Terminalia arjuna and their antimicrobial activity. Biomolecules 11(2), 259. Doi:10.3390/biom11020259
Suma M.S., Basheer R., Sreelekshmy B.R., Vipinlal V., Sha M.A., Jineesh P., Krishnan A., Archana S.R., Saji V.S. & Shibli S.M.A., 2019, Pseudomonas putida RSS biopassivation of mild steel for long term corrosion inhibition. Biodegradation 137: 59–67.
Suneeta P., Eraivan Arutkani Aiyanathan K. & Nakkeeran S., 2018, Bacillomycins – the effective molecules in plant disease management. Int. J. Curr. Microbiol. App. Sci. 7(2): 823–835.
Tkachuk N., Zelena L., Lukash O. & Mazur P., 2021a, Microbiological and genetic characteristics of Bacillus velezensis bacillibactin-producing strains and their effect on the sulfate-reducing bacteria biofilms on the poly(ethylene terephthalate) surface. Ecol. Quest. 32(2): 119–129. Doi:10.12775/EQ.2021.019
Tkachuk N., Zelena L. & Mazur P., 2021b, A modern view at some dihydroxybenzoate-capped siderophores: ecological, technical and medical aspects. Environ. Sci. 4(37): 134–140. Doi:10.32846/2306-9716/2021.eco.4-37.19
Tkachuk N. & Zelena L., 2021, The impact of bacteria of the genus Bacillus upon the biodamage/biodegradation of some metals and extensively used petroleum-based plastics. Corros. Mater. Degrad. 2: 531–553. Doi:10.3390/cmd2040028
Tkachuk N. & Zelena L., 2022, Inhibition of heterotrophic bacterial biofilm in the soil ferrosphere by Streptomyces spp. and Bacillus velezensis. Biofouling. 38(9): 916–925. Doi:10.1080/08927014.2022.2151362
Tkachuk N. & Zelena L., 2023, The intensity of biofilm formation by heterotrophic bacteria isolated from soil ferrosphere. Ecol. Quest. 34(2): 37–41. Doi:10.12775/EQ.2023.016
Vaithiyanathan S., Chandrasekaran K. & Barik R.C., 2018, Green biocide for mitigating sulfate-reducing bacteria influenced microbial corrosion. 3 Biotech. 8(12), 495. Doi:10.1007/s13205-018-1513-7
Vázquez J.A., Durán A., Rodríguez-Amado I., Prieto M.A., Rial D. & Murado M.A., 2011, Evaluation of toxic effects of several carboxylic acids on bacterial growth by toxicodynamic modelling. Microb. Cell. Fact. 10, 100. Doi:10.1186/1475-2859-10-100
Verma C., Hussain C.M., Quraishi M.A. & Alfantazi A., 2023, Green surfactants for corrosion control: Design, performance and applications. Adv. Colloid Interface Sci. 311, 102822. Doi:10.1016/j.cis.2022.102822
Videla H.A. & Herrera L.K., 2009, Understanding microbial inhibition of corrosion. a comprehensive overview. Int. Biodeter. Biodegrad. 63: 896–900.
Vijayabharathi R., Sathya A. & Gopalakrishnan S., 2018, Extracellular biosynthesis of silver nanoparticles using Streptomyces griseoplanus SAI-25 and its antifungal activity against Macrophomina phaseolina, the charcoal rot pathogen of sorghum. Biocatal. Agric. Biotechnol. 14: 166–171. Doi:10.1016/j.bcab.2018.03.006
Vollenbroich D., Pauli G., Ozel M. & Vater J., 1997, Antimycoplasma properties and application in cell culture of surfactin, a lipopeptide antibiotic from Bacillus subtilis. Appl. Environ. Microbiol. 63: 44–49.
Wakai S., Eno N., Miyanaga K., Mizukami H., Sunaba T. & Miyano Y., 2022, Dynamics of microbial communities on the corrosion behavior of steel in freshwater environment. npj Mater. Degrad. 6, 45. Doi:10.1038/s41529-022-00254-0
Wang D., Zhou E., Xu D. & Lovley D.R., 2023a, Burning question: Are there sustainable strategies to prevent microbial metal corrosion? Microb. Biotechnol. 16(11): 2026–2035. Doi:10.1111/1751-7915.14347
Wang J., Du M., Shan X., Xu T. & Shi P., 2023b, Corrosion inhibition study of marine Streptomyces against sulfate-reducing bacteria in oilfield produced water. Corros. Sci. 223, 111441.
Wang L., Yu L. & Lin C., 2019, Extraction of protease produced by sea mud bacteria and evaluation of antifouling performance. J. Ocean Univ. China 18: 1139–1146.
Wang Y., Zhang R., Duan J., Shi X., Zhang Y., Guan F., Sand W. & Hou B., 2022, Extracellular polymeric substances and biocorrosion/biofouling: recent advances and future perspectives. Int. J. Mol. Sci. 23, 5566. Doi:10.3390/ijms23105566
Warner J.C., Cannon A.S., Dye K.M., 2004, Green Chemistry. EIA, 24: 775–799. Doi:10.1016/j.eiar.2004.06.006
World Health Organization, 2014, Antimicrobial resistance: global report on surveillance. 232 pp. https://iris.who.int/bitstream/handle/10665/112642/9789241564748_eng.pdf
Xie Y., Ye R. & Liu H., 2006, Synthesis of silver nanoparticles in reverse micelles stabilized by natural biosurfactant. Colloids Surf. A Physicochem. Eng. Asp. 2: 175–178.
Yang R., Lei S., Xu X., Jin H., Sun H., Zhao X., Pang B. & Shi J., 2020, Key elements and regulation strategies of NRPSs for biosynthesis of lipopeptides by Bacillus. Appl. Microbiol. Biotechnol. 104(19): 8077–8087.
Yoo Y., Seo D.-H., Lee H., Cho E.-S., Song N.-E., Nam T.G., Nam Y.-D. & Seo M.-J., 2019, Inhibitory effect of Bacillus velezensis on biofilm formation by Streptococcus mutans. J. Biotechnol. 298: 57–63.
Yu X., Li J., Mu D., Zhang H., Liu Q. & Chen G., 2021, Green synthesis and characterizations of silver nanoparticles with enhanced antibacterial properties by secondary metabolites of Bacillus subtilis (SDUM301120). Green Chem. Lett. Rev. 14(2): 190–203. Doi:10.1080/17518253.2021.1894244
Zahed M.A., Matinvafa M.A., Azari A. & Mohajeri L., 2022, Biosurfactant, a green and effective solution for bioremediation of petroleum hydrocarbons in the aquatic environment. Discov. Water 2, 5. Doi:10.1007/s43832-022-00013-x
Zhang N., Xiong G. & Liu Z., 2022a, Toxicity of metal-based nanoparticles: Challenges in the nano era. Front. Bioeng. Biotechnol. 10, 1001572. Doi:10.3389/fbioe.2022.1001572
Zhang Q., Zhang R., Wu R., Luo Y., Guo L. & He Z., 2022b, Green and high-efficiency corrosion inhibitors for metals: a review. J. Adhes. Sci. Technol. 37: 1501–1524.
Zanna S., Seyeux A., Allion-Maurer A. & Marcus P., 2020, Escherichia coli siderophore-induced modification of passive films on stainless steel. Corros. Sci. 175, 108872.
Zerrad A., Anissi J., Ghanam J., Sendide K. & El Hassouni M., 2014, Antioxidant and antimicrobial activities of melanin produced by a Pseudomonas balearica strain. J. Biotechnol. Lett. 5: 87–94.
Zuo R., 2007, Biofilms: strategies for metal corrosion inhibition employing microorganisms. Appl. Microbiol. Biotechnol. 76: 1245–1253.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Nataliia Tkachuk, Liubov Zelena
![Creative Commons License](http://i.creativecommons.org/l/by-nd/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 4
Number of citations: 0