Identification of human interference and its impact on forest canopy density in the forested areas of Odisha, India
DOI:
https://doi.org/10.12775/EQ.2025.034Keywords
deforestation, mining, anthropogenic disturbance, FCD, NDVI, trend analysisAbstract
Forests are among the most vital and indispensable components of our ecosystems. However, increasing population pressure and associated infrastructural development have led to significant degradation of forest resources, particularly in developing regions. This study examines the temporal dynamics of forest canopy density over a 30-year period and identifies areas of disturbance within the forested landscapes of Keonjhar and Sundargarh districts, situated in northern and north-western Odisha, India. Forest canopy density changes were assessed using Landsat imagery from 1988 and 2021. Remote sensing-based biophysical indices such as AVI, BSI, and SSI were employed to develop a forest canopy density (FCD) model. Results indicate that approximately 17% of the forested area has been converted to bare land, and nearly 10% of the dense and moderately dense forested area has been converted to open forest in this period. Additionally, secondary datasets, including road networks, railway lines, mining areas, settlements, and industrial zones were integrated to analyze human-induced disturbances and delineate disturbance zones within the forests. A trend analysis of NDVI from 1988 to 2021 was conducted to validate these zones. Increasing mining activities, infrastructure development, settlement growth, and industrial waste dumping are identified as primary contributors to the increasing disturbance within the forest ecosystems of Keonjhar and Sundargarh districts. These findings highlight the urgent need for sustainable forest management and conservation strategies in this region.
References
Abdollahnejad, A., Panagiotidis, D., & Surový, P., 2017, Forest canopy density assessment using different approaches – Review 2017: 107–116. https://doi.org/10.17221/110/2016-JFS
Basu, A., & Nayak, N.C., 2011, Underlying causes of forest cover change in Odisha, India. Forest Policy and Economics 13: 563–569. https://doi.org/10.1016/J.FORPOL.2011.07.004
Bhandari, S.K., & Nandy, S., 2024, Forest Aboveground Biomass Prediction by Integrating Terrestrial Laser Scanning Data, Landsat 8 OLI-Derived Forest Canopy Density and Spectral Indices. Journal of the Indian Society of Remote Sensing 52: 813–824. https://doi.org/10.1007/S12524-023-01687-Z/FIGURES/7
Boutsoukis, C., Manakos, I., Heurich, M., & Delopoulos, A., 2019, Canopy Height Estimation from Single Multispectral 2D Airborne Imagery Using Texture Analysis and Machine Learning in Structurally Rich Temperate Forests. Remote Sensing 11, 2853. https://doi.org/10.3390/RS11232853
Bragagnolo, L., da Silva, R.V., & Grzybowski, J.M.V., 2021, Amazon forest cover change mapping based on semantic segmentation by U-Nets. Ecological Informatics 62, 101279. https://doi.org/10.1016/j.ecoinf.2021.101279
Chandrashekhar, B., Saran, S., Raju, P.L.N., & Roy, P.S., 2005, Forest Canopy Density Stratification : How Relevant is Biophysical Spectral Response Modelling Approach ? Geocarto International 20(1): 15–21.
Cohen, W.B., Healey, S.P., Yang, Z., Stehman, S. V., Brewer, C.K., Brooks, E.B., Gorelick, N., Huang, C., Hughes, M.J., Kennedy, R.E., Loveland, T.R., Moisen, G.G., Schroeder, T.A., Vogelmann, J.E., Woodcock, C.E., Yang, L., & Zhu, Z., 2017, How Similar Are Forest Disturbance Maps Derived from Different Landsat Time Series Algorithms? Forests 8: 1–19. https://doi.org/10.3390/f8040098
Crouzeilles, R., Maurenza, D., Prieto, P. V., Barros, F.S.M., Jakovac, C., Ferreira, M.S., Chazdon, R.L., Lindenmayer, D.B., Brancalion, P.H.S., Ceccon, E., Adams, C., Lazos-Chavero, E., Monteiro, L., Junqueira, A.B., Strassburg, B.B.N., & Guariguata, M.R., 2021, Associations between socio-environmental factors and landscape-scale biodiversity recovery in naturally regenerating tropical and subtropical forests. Conservation Letters 14(2). https://doi.org/10.1111/conl.12768
De Pauw, K., Sanczuk, P., Meeussen, C., Depauw, L., De Lombaerde, E., Govaert, S., Vanneste, T., Brunet, J., Cousins, S.A.O., Gasperini, C., Hedwall, P.O., Iacopetti, G., Lenoir, J., Plue, J., Selvi, F., Spicher, F., Uria-Diez, J., Verheyen, K., Vangansbeke, P., & De Frenne, P., 2022, Forest understorey communities respond strongly to light in interaction with forest structure, but not to microclimate warming. New Phytologist 233: 219–235. https://doi.org/10.1111/NPH.17803;WGROUP:STRING:PUBLICATION
Deka, J., & Tripathi, O.P., 2013, Implementation of Forest Canopy Density Model to Monitor Tropical Deforestation 41: 469–475. https://doi.org/10.1007/s12524-012-0224-5
Eckert, S., Hüsler, F., Liniger, H., & Hodel, E., 2015, Trend analysis of MODIS NDVI time series for detecting land degradation and regeneration in Mongolia. Journal of Arid Environments 113: 16–28. https://doi.org/10.1016/j.jaridenv.2014.09.001
Erdody, T.L., & Moskal, L.M., 2010. Fusion of LiDAR and imagery for estimating forest canopy fuels. Remote Sensing of Environment 114: 725–737. https://doi.org/10.1016/J.RSE.2009.11.002
Estoque, R.C., Johnson, B.A., Gao, Y., Dasgupta, R., Ooba, M., Togawa, T., Hijioka, Y., Murayama, Y., Gavina, L.D., Lasco, R.D., & Nakamura, S., 2021, Remotely sensed tree canopy cover-based indicators for monitoring global sustainability and environmental initiatives. Research in Astronomy and Astrophysics 21. https://doi.org/10.1088/1674-4527/21/2/37
Ewers, R.M., & Banks-Leite, C., 2013, Fragmentation Impairs the Microclimate Buffering Effect of Tropical Forests. PLOS ONE 8, e58093. https://doi.org/10.1371/JOURNAL.PONE.0058093
Fasil, M., Surendran, U.P., Gopinath, G., Karimbanakkuzhi, A., & Sahadevan, A.S., 2022, Integration of GIS, remote sensing, and spectral indices for evaluation of forest canopy density model in drought and wet years in Western Ghats region of humid tropical Kerala, India. Arabian Journal of Geosciences 15. https://doi.org/10.1007/s12517-022-10368-z
Food and Agriculture Organisation (FAO), 2010, Global Forest Resources Assessment 2010 - Main report. FAO Forestry Paper 163, 350 pp.
Forkel, M., Carvalhais, N., Verbesselt, J., Mahecha, M.D., Neigh, C.S.R., & Reichstein, M., 2013, Trend Change Detection in NDVI Time Series: Effects of Inter-Annual Variability and Methodology. Remote Sensing 5: 2113–2144. https://doi.org/10.3390/RS5052113
Gao, Si, Zhong, R., Yan, K., Ma, X., Chen, X., Pu, J., Gao, Sicong, Qi, J., Yin, G., & Myneni, R.B., 2023, Evaluating the saturation effect of vegetation indices in forests using 3D radiative transfer simulations and satellite observations. Remote Sensing of Environment 295, 113665. https://doi.org/10.1016/J.RSE.2023.113665
Gillespie, T.W., Ostermann-Kelm, S., Dong, C., Willis, K.S., Okin, G.S., & MacDonald, G.M., 2018. Monitoring changes of NDVI in protected areas of southern California. Ecological Indicators 88: 485–494. https://doi.org/10.1016/j.ecolind.2018.01.031
Godinho, S., Gil, A., Guiomar, N., Neves, N., & Pinto-Correia, T., 2016, A remote sensing-based approach to estimating montado canopy density using the FCD model: a contribution to identifying HNV farmlands in southern Portugal. Agroforestry Systems 90: 23–34. https://doi.org/10.1007/s10457-014-9769-3
Grecchi, R.C., Beuchle, R., Shimabukuro, Y.E., Aragão, L.E.O.C., Arai, E., Simonetti, D., & Achard, F., 2017, An integrated remote sensing and GIS approach for monitoring areas affected by selective logging: A case study in northern Mato Grosso, Brazilian Amazon. International journal of applied earth observation and geoinformation : ITC journal 61: 70–80. https://doi.org/10.1016/j.jag.2017.05.001
Gupta, A., Sharma, S.K., Mishra, A., Singh, G.P., & Singh, C.P., 2024, Effect of mine-derived pollution on photosynthetic pigments of plants in Rajasthan. Vegetos 37: 1833–1842. https://doi.org/10.1007/S42535-024-00992-3/FIGURES/5
Gyawali, A., Adhikari, H., Aalto, M., & Ranta, T., 2024, From simple linear regression to machine learning methods: Canopy cover modelling of a young forest using planet data. Ecological Informatics 82, 102706. https://doi.org/10.1016/J.ECOINF.2024.102706
Hadi, Korhonen, L., Hovi, A., Rönnholm, P., & Rautiainen, M., 2016, International Journal of Applied Earth Observation and Geoinformation The accuracy of large-area forest canopy cover estimation using Landsat in boreal region. International Journal of Applied Earth Observations and Geoinformation 53: 118–127. https://doi.org/10.1016/j.jag.2016.08.009
Hansen, M.C., Wang, L., Song, X.P., Tyukavina, A., Turubanova, S., Potapov, P.V., & Stehman, S.V., 2020, The fate of tropical forest fragments. Science Advances 6. https://doi.org/10.1126/SCIADV.AAX8574/SUPPL_FILE/AAX8574_SM.PDF
Hermes, C., Döpper, A., Schaefer, H.M., & Segelbacher, G., 2016, Effects of forest fragmentation on the morphological and genetic structure of a dispersal-limited, endangered bird species. Nature Conservation 16: 39–58. https://doi.org/10.3897/NATURECONSERVATION.16.10905
Hernández-Clemente, R., Hornero, A., Mottus, M., Penuelas, J., González-Dugo, V., Jiménez, J.C., Suárez, L., Alonso, L., & Zarco-Tejada, P.J., 2019, Early Diagnosis of Vegetation Health From High-Resolution Hyperspectral and Thermal Imagery: Lessons Learned From Empirical Relationships and Radiative Transfer Modelling. Current Forestry Reports 5: 169–183. https://doi.org/10.1007/s40725-019-00096-1
Himayah, S., Hartono, & Danoedoro, P., 2016, The Utilization of Landsat 8 Multitemporal Imagery and Forest Canopy Density (FCD) Model for Forest Reclamation Priority of Natural Disaster Areas at Kelud Mountain, East Java. IOP Conference Series: Earth and Environmental Science 47. https://doi.org/10.1088/1755-1315/47/1/012043
Hoang, N.T., & Kanemoto, K., 2021, Mapping the deforestation footprint of nations reveals growing threat to tropical forests. Nature Ecology and Evolution 5: 845–853. https://doi.org/10.1038/s41559-021-01417-z
Hota, P., & Behera, B., 2019, Extraction of mineral resources and regional development outcomes: Empirical evidence from Odisha, India. The Extractive Industries and Society 6: 267–278. https://doi.org/10.1016/J.EXIS.2019.03.001
Hota, P., & Behera, B., 2016, Opencast coal mining and sustainable local livelihoods in Odisha, India. Mineral Economics 29: 1–13. https://doi.org/10.1007/S13563-016-0082-7/TABLES/14
Hota, P., & Behera, B., 2015, Coal mining in Odisha: An analysis of impacts on agricultural production and human health. The Extractive Industries and Society 2: 683–693. https://doi.org/10.1016/J.EXIS.2015.08.007
Ismail, M., Hartono, & Danoedoro, P., 2017, The Application of Forest Cover Density (FCD) Model for Structural Composition of Vegetation Changes in Part of Lore Lindu National Park, Central Sulawesi Province. IOP Conference Series: Earth and Environmental Science 98, 012056. https://doi.org/10.1088/1755-1315/98/1/012056
Jamali, S., Jönsson, P., Eklundh, L., Ardö, J., & Seaquist, J., 2015, Detecting changes in vegetation trends using time series segmentation. Remote Sensing of Environment 156: 182–195. https://doi.org/10.1016/J.RSE.2014.09.010
Joshi, C., Leeuw, J. De, Skidmore, A.K., van Duren, I.C., & van Oosten, H., 2006, Remotely sensed estimation of forest canopy density: A comparison of the performance of four methods. International Journal of Applied Earth Observation and Geoinformation 8: 84–95. https://doi.org/10.1016/J.JAG.2005.08.004
Ju, J., & Masek, J.G., 2016, The vegetation greenness trend in Canada and US Alaska from 1984–2012 Landsat data. Remote Sensing of Environment 176: 1–16. https://doi.org/10.1016/J.RSE.2016.01.001
Kganyago, M., Mhangara, P., & Adjorlolo, C., 2021, Estimating Crop Biophysical Parameters Using Machine Learning Algorithms and Sentinel-2 Imagery. Remote Sensing 13, 4314. https://doi.org/10.3390/RS13214314
Kherif, F., & Latypova, A., 2020, Principal component analysis, [in:] Machine Learning: Methods and Applications to Brain Disorders, p. 209–225. https://doi.org/10.1016/B978-0-12-815739-8.00012-2
Korhonen, L., 2011, Estimation of boreal forest canopy cover with ground measurements, statistical models and remote sensing. Dissertationes Forestales 2011. https://doi.org/10.14214/DF.115
Korhonen, L., Ali-sisto, D., & Tokola, T., 2015, Tropical forest canopy cover estimation using satellite imagery and airborne lidar reference data 49.
Korhonen, L., Korhonen, K.T., Rautiainen, M., Stenberg, P., 2006. Estimation of forest canopy cover: A comparison of field measurement techniques. Silva Fennica 40: 577–588.
Korhonen, L., Packalen, P., & Rautiainen, M., 2017, Remote Sensing of Environment Comparison of Sentinel-2 and Landsat 8 in the estimation of boreal forest canopy cover and leaf area index. Remote Sensing of Environment 195: 259–274. https://doi.org/10.1016/j.rse.2017.03.021
Krishna, R.S., Mishra, J., Meher, S., Das, S.K., Mustakim, S.M., & Singh, S.K., 2020, Industrial solid waste management through sustainable green technology: Case study insights from steel and mining industry in Keonjhar, India. Materials Today: Proceedings 33: 5243–5249. https://doi.org/10.1016/J.MATPR.2020.02.949
Kucsicsa, G., Popovici, E.A., Bălteanu, D., Dumitraşcu, M., Grigorescu, I., & Mitrică, B., 2020, Assessing the Potential Future Forest-Cover Change in Romania, Predicted Using a Scenario-Based Modelling. Environmental Modeling and Assessment 25: 471–491. https://doi.org/10.1007/s10666-019-09686-6
Kumar, A., Venkatesh, A.S., Amesh Babu, P.V.R., & Nayak, S., 2012, Genetic Implications of Rare Uraninite and Pyrite in Quartz-Pebble Conglomerates from Sundargarh District of Orissa, Eastern India. Journal of the Geological Society of India 79: 279–286. https://doi.org/10.1007/S12594-012-0040-0
Kumar, J., Talwar, P., & Krishna A.P., 2015, Forest Canopy Density and ASTER DEM based Study for Dense Forest Investigation using Remote Sensing and GIS Techniques around East Singhbhum in Jharkhand, India. International Journal of Advanced Remote Sensing and GIS 4: 1026–1032. https://doi.org/10.23953/cloud.ijarsg.96
Kumar, K., 2014. Confronting Extractive Capital: Social and Environmental Movements in Odisha on JSTOR [WWW Document]. Economic and Political Weekly. URL https://www.jstor.org/stable/24479385 [Accessed 9.9.2025].
Lenk, A., Richter, R., Kretz, L., & Wirth, C., 2024, Effects of canopy gaps on microclimate, soil biological activity and their relationship in a European mixed floodplain forest. Science of The Total Environment 941, 173572. https://doi.org/10.1016/J.SCITOTENV.2024.173572
Lohchab, R.K., & Saini, J.K., 2018, Industrial Pollution Management I: 1–6.
Loi, D.T., Chou, T., & Fang, Y., 2017, Integration of GIS and Remote Sensing for Evaluating Forest Canopy Density Index in Thai Nguyen Province. International Journal of Environmental Science and Development 8(8): 539–542. https://doi.org/10.18178/ijesd.2017.8.8.1012
López García, J., Prado Molina, J., Manzo Delgado, L., & Peralta Higuera, A., 2016, Monitoreo de cambios en la densidad de cobertura forestal en bosque templado usando fotografías aéreas digitales de alta resolución. Investigaciones Geograficas 2016: 59–74. https://doi.org/10.14350/rig.47360
Ma, S., Zhou, Z., Zhang, Y., An, Y., & Yang, G. Bin, 2022, Identification of forest disturbance and estimation of forest age in subtropical mountainous areas based on Landsat time series data. Earth Science Informatics 15: 321–334. https://doi.org/10.1007/s12145-021-00728-w
Magnago, L.F.S., Rocha, M.F., Meyer, L., Martins, S.V., & Meira-Neto, J.A.A., 2015, Microclimatic conditions at forest edges have significant impacts on vegetation structure in large Atlantic forest fragments. Biodiversity and Conservation 24: 2305–2318. https://doi.org/10.1007/s10531-015-0961-1
Martínez, B., & Gilabert, M.A., 2009, Vegetation dynamics from NDVI time series analysis using the wavelet transform. Remote Sensing of Environment 113: 1823–1842. https://doi.org/10.1016/j.rse.2009.04.016
Mengist, W., Soromessa, T., & Feyisa, G.L., 2021, Monitoring Afromontane forest cover loss and the associated socio-ecological drivers in Kaffa biosphere reserve, Ethiopia. Trees, Forests and People 6, 100161. https://doi.org/10.1016/j.tfp.2021.100161
Mishra, B., 2010, Agriculture, Industry and Mining in Orissa in the Post-Liberalisation Era: An Inter-District and Inter-State Panel Analysis on JSTOR [WWW Document]. Economic and Political Weekly. URL https://www.jstor.org/stable/27807027 [Accessed 9.9.2025].
Mishra, M., Santos, C.A.G., Nascimento, T.V.M. do, Dash, M.K., Silva, R.M. da, Kar, D., & Acharyya, T., 2022, Mining impacts on forest cover change in a tropical forest using remote sensing and spatial information from 2001–2019: A case study of Odisha (India). Journal of Environmental Management 302, 114067. https://doi.org/10.1016/J.JENVMAN.2021.114067
Mishra, P.P., & Pujari, A.K., 2008, Impact of mining on agricultural productivity: A case study of the Indian State of Orissa. South Asia Economic Journal 9: 337–350. https://doi.org/10.1177/139156140800900204
Mon, M.S., Mizoue, N., Htun, N.Z., Kajisa, T., & Yoshida, S., 2012, Estimating forest canopy density of tropical mixed deciduous vegetation using Landsat data: a comparison of three classification approaches. International Journal of Remote Sensing 33: 1042–1057. https://doi.org/10.1080/01431161.2010.549851
O’Laughlin, J., Livingston, R.L., Thier, R., Thornton, J.P., Toweill, D.E., & Morelan, L., 1994, Defining and Measuring Forest Health. Journal of Sustainable Forestry 2: 65–85. https://doi.org/10.1300/J091v02n01_03
Pal, S.C., Chakrabortty, R., Malik, S., & Das, B., 2018, Application of forest canopy density model for forest cover mapping using LISS-IV satellite data : a case study of Sali watershed, West Bengal. Modeling Earth Systems and Environment 4: 853-865. https://doi.org/10.1007/s40808-018-0445-x
Palmero-Iniesta, M., Pino, J., Pesquer, L., & Espelta, J.M., 2021, Recent forest area increase in Europe: expanding and regenerating forests differ in their regional patterns, drivers and productivity trends. European Journal of Forest Research 140: 793–805. https://doi.org/10.1007/s10342-021-01366-z
Pei, H., Liu, M., Jia, Y., Zhang, H., Li, Y., & Xiao, Y., 2021, The trend of vegetation greening and its drivers in the Agro-pastoral ecotone of northern China, 2000–2020. Ecological Indicators 129, 108004. https://doi.org/10.1016/j.ecolind.2021.108004
Pfeifer, M., Lefebvre, V., Peres, C.A., Banks-Leite, C., Wearn, O.R., Marsh, C.J., Butchart, S.H.M., Arroyo-Rodríguez, V., Barlow, J., Cerezo, A., Cisneros, L., D’Cruze, N., Faria, D., Hadley, A., Harris, S.M., Klingbeil, B.T., Kormann, U., Lens, L., Medina-Rangel, G.F., Morante-Filho, J.C., Olivier, P., Peters, S.L., Pidgeon, A., Ribeiro, D.B., Scherber, C., Schneider-Maunoury, L., Struebig, M., Urbina-Cardona, N., Watling, J.I., Willig, M.R., Wood, E.M., & Ewers, R.M., 2017, Creation of forest edges has a global impact on forest vertebrates. Nature 551: 187–191. https://doi.org/10.1038/NATURE24457
Plessis, W.P., 1999, Linear regression relationships between NDVI, vegetation and rainfall in Etosha National Park, Namibia. Journal of Arid Environments 42(4): 235–260.
Popradit, A., Srisatit, T., Kiratiprayoon, S., Yoshimura, J., Ishida, A., Shiyomi, M., Murayama, T., Chantaranothai, P., Outtaranakorn, S., & Phromma, I., 2015, Anthropogenic effects on a tropical forest according to the distance from human settlements. Scientific Reports 5, 1–10. https://doi.org/10.1038/srep14689
Prodromou, M., Gitas, I., Themistocleous, K., & Hadjimitsis, D., 2022, The implementation of the Forest Canopy Density (FCD) model for Coniferous ecosystems in Cyprus forests, using Landsat-8 and Sentinel-2 satellite data. https://doi.org/10.5194/EGUSPHERE-EGU22-9865
Radhakrishnan, S., Lakshminarayanan, A.S., Chatterjee, J.M., & Hemanth, D.J., 2020, Forest data visualization and land mapping using support vector machines and decision trees. Earth Science Informatics 13: 1119–1137. https://doi.org/10.1007/s12145-020-00492-3
Ramsay, M.S., Sgarlata, G.M., Barratt, C.D., Salmona, J., Andriatsitohaina, B., Kiene, F., Manzi, S., Ramilison, M.L., Rakotondravony, R., Chikhi, L., Lehman, S.M., & Radespiel, U., 2023, Effects of Forest Fragmentation on Connectivity and Genetic Diversity in an Endemic and an Invasive Rodent in Northwestern Madagascar. Genes 14, 1451. https://doi.org/10.3390/GENES14071451/S1
Rikimaru, A., & Koganei-shi, K.-C., 2017, Development of forest canopy density mapping and monitoring model using indices of vegetation, bare soil and shadow 1–7.
Rikimaru, A., & Miyatake, S., 2009, Development of forest canopy density mapping and monitoring model using indices of vegetation, bare soil and shadow. Geospatial World 09/01/2009, p. 1–5.
Rikimaru, A., Roy, P.S., & Miyatake, S., 2002, Tropical forest cover density mapping. Tropical Ecology 43: 39–47.
Rodrigues, P., Dorresteijn, I., Guilherme, J.L., Hanspach, J., De Beenhouwer, M., Hylander, K., Bekele, B., Senbeta, F., Fischer, J., & Nimmo, D., 2021, Predicting the impacts of human population growth on forest mammals in the highlands of southwestern Ethiopia. Biological Conservation 256. https://doi.org/10.1016/j.biocon.2021.109046
Sahana, M., Sajjad, H., & Ahmed, R., 2015, Assessing spatio-temporal health of forest cover using forest canopy density model and forest fragmentation approach in Sundarban reserve forest, India. Modeling Earth Systems and Environment 1: 1–10. https://doi.org/10.1007/S40808-015-0043-0/TABLES/2
Santos, C.A.G., do Nascimento, T.V.M., & da Silva, R.M., 2020, Analysis of forest cover changes and trends in the Brazilian semiarid region between 2000 and 2018. Environmental Earth Sciences 79: 1–20. https://doi.org/10.1007/s12665-020-09158-1
Seidler, R., & Bawa, K.S., 2001, Logged forests,.[in:] Levin S.A. (ed.) Encyclopedia of biodiversity. New York: Elsevier, p. 747–760. DOI 10.1016/B0-12-226865-2/00178-4.
Sharma, I., Tongkumchum, P., & Ueranantasun, A., 2021, Regression Analysis of Normalized Difference Vegetation Index (NDVI) to Compare Seasonal Patterns and 15 Year Trend of Vegetation from East to West of Nepal. Nature Environment and Pollution Technology 20: 267–273. https://doi.org/10.46488/NEPT.2021.V20I01.029
Sharma, P., Thapa, R.B., & Matin, M.A., 2020, Examining forest cover change and deforestation drivers in Taunggyi District, Shan State, Myanmar. Environment, Development and Sustainability 22: 5521–5538. https://doi.org/10.1007/s10668-019-00436-y
Singh, S., 2021, Forestry Research in Mine Reclamation in India: Past, Present and Future. Indian Journal of Forestry 43: 10–18. https://doi.org/10.54207/BSMPS1000-2021-82P483
Stojanova, D., Panov, P., Gjorgjioski, V., Kobler, A., & Džeroski, S., 2010, Estimating vegetation height and canopy cover from remotely sensed data with machine learning. Ecological Informatics 5: 256–266. https://doi.org/10.1016/J.ECOINF.2010.03.004
Sudhakar Reddy, C., Saranya, K.R.L., Vazeed Pasha, S., Satish, K. V., Jha, C.S., Diwakar, P.G., Dadhwal, V.K., Rao, P.V.N., & Krishna Murthy, Y.V.N., 2018. Assessment and monitoring of deforestation and forest fragmentation in South Asia since the 1930s. Global and Planetary Change 161: 132–148. https://doi.org/10.1016/j.gloplacha.2017.10.007
Syakur, S., Kausar, A.N., & Fazlina, Y.D., 2025' Analysis of mangrove vegetation distribution and density in East Aceh Regency. IOP Conference Series: Earth and Environmental Science 1477, 012011. https://doi.org/10.1088/1755-1315/1477/1/012011
Tian, F., Fensholt, R., Verbesselt, J., Grogan, K., Horion, S., & Wang, Y., 2015, Evaluating temporal consistency of long-term global NDVI datasets for trend analysis. Remote Sensing of Environment 163: 326–340. https://doi.org/10.1016/j.rse.2015.03.031
Tian, Z., Fan, J., Yu, T., de Leon, N., Kaeppler, S.M., & Zhang, Z., 2025, Mitigating NDVI saturation in imagery of dense and healthy vegetation. ISPRS Journal of Photogrammetry and Remote Sensing 227: 234–250. https://doi.org/10.1016/J.ISPRSJPRS.2025.06.013
Vancutsem, C., Achard, F., Pekel, J.F., Vieilledent, G., Carboni, S., Simonetti, D., Gallego, J., Aragão, L.E.O.C., & Nasi, R., 2021, Long-term (1990–2019) monitoring of forest cover changes in the humid tropics. Science Advances 7: 1–22. https://doi.org/10.1126/sciadv.abe1603
Verrelst, J., Malenovský, Z., Van der Tol, C., Camps-Valls, G., Gastellu-Etchegorry, J.P., Lewis, P., North, P., & Moreno, J., 2019, Quantifying Vegetation Biophysical Variables from Imaging Spectroscopy Data: A Review on Retrieval Methods. Surveys in Geophysics 40: 589–629. https://doi.org/10.1007/s10712-018-9478-y
Wang, C., Feng, M.C., Yang, W. De, Ding, G.W., Sun, H., Liang, Z.Y., Xie, Y.K., & Qiao, X.X., 2016, Impact of spectral saturation on leaf area index and aboveground biomass estimation of winter wheat. Spectroscopy Letters 49: 241–248. https://doi.org/10.1080/00387010.2015.1133652;WGROUP:STRING:PUBLICATION
Wang, X., Shi, J., Wang, C., Gao, C., & Zhang, F., 2023, Remote Sensing Inversion and Mapping of Typical Forest Stand Age in the Loess Plateau. Remote Sensing 15, 5581. https://doi.org/10.3390/RS15235581
Xiong, Y., & Wang, H., 2022, Spatial relationships between NDVI and topographic factors at multiple scales in a watershed of the Minjiang River, China. Ecological Informatics 69, 101617. https://doi.org/10.1016/j.ecoinf.2022.101617
Xue, J., & Su, B., 2017, Significant remote sensing vegetation indices: A review of developments and applications. Journal of Sensors 2017. https://doi.org/10.1155/2017/1353691
Yang, Y., Tian, Q., & Xu, L., 2007, A new approach for estimating the vegetation fraction in mountainous area. https://doi.org/10.1117/12.760492 6752: 530–538. https://doi.org/10.1117/12.760492
Zhang, Z., Jin, W., Dou, R., Cai, Z., Wei, H., Wu, T., Yang, S., Tan, M., Li, Z., Wang, C., Yin, G., & Xu, B., 2023, Improved Estimation of Leaf Area Index by Reducing Leaf Chlorophyll Content and Saturation Effects Based on Red-Edge Bands. IEEE Transactions on Geoscience and Remote Sensing 61. https://doi.org/10.1109/TGRS.2023.3270712
Zoungrana, B.J.B., Conrad, C., Thiel, M., Amekudzi, L.K., & Da, E.D., 2018, MODIS NDVI trends and fractional land cover change for improved assessments of vegetation degradation in Burkina Faso, West Africa. Journal of Arid Environments 153: 66–75. https://doi.org/10.1016/j.jaridenv.2018.01.005
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Tanushree Basu Roy, Dipanwita Dutta

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 239
Number of citations: 0