Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Ecological Questions

Mapping impervious surface change from remote sensing and GIS data: A case study in Hochiminh city, Vietnam
  • Home
  • /
  • Mapping impervious surface change from remote sensing and GIS data: A case study in Hochiminh city, Vietnam
  1. Home /
  2. Archives /
  3. Vol. 35 No. 3 (2024) /
  4. Articles

Mapping impervious surface change from remote sensing and GIS data: A case study in Hochiminh city, Vietnam

Authors

  • Le Hung Trinh Le Quy Don Technical University
  • Van Tung Pham Ho Chi Minh University of Natural Resources and Environment, Hochiminh city, Vietnam
  • Xuan Bien Tran Hanoi University of Natural Resources and Environmental, Hanoi, Vietnam
  • Van Trung Nguyen Hanoi University of Mining and Geology, Hanoi, Vietnam
  • Xuan Cuong Vu Ho Chi Minh University of Natural Resources and Environment, Hochiminh city, Vietnam
  • Thi Hanh Tong Le Quy Don Technical University, Hanoi, Vietnam
  • Van Phu Le Le Quy Don Technical University, Hanoi, Vietnam

DOI:

https://doi.org/10.12775/EQ.2024.030

Keywords

impervious surface, remote sensing, GIS, machine learning, Cellular Automata, Hochiminh city

Abstract

Impervious surface is artificial surfaces that prevent water from entering the soil. The increase in impervious surface area has led to negative impacts on the urban environment, including an increase in the risk of flooding, a decrease in vegetation cover, and the formation of urban heat islands. This paper presents the results of building a predictive model of impervious surfaces in Hochiminh city from remote sensing and GIS data. Landsat and Sentinel 2 satellite images for the period 2002–2022 are used to classify impervious surfaces and extract input layers about vegetation cover, land surface temperature, combined with GIS data (elevation, slope, aspect, distance to road, distance to hydrology, population density) for modeling and predicting impervious surface changes in future. 03 machine learning algorithms, including Support Vector Machine (SVM), Random Forest (RF), Classification and Regression Trees (CART) and maximum likelihood method are used to classify impervious surfaces from Landsat satellite images, then select the method with the highest accuracy. To predict the future distribution of impervious surface, this study uses Cellular Automata (CA) model and 02 artificial intelligence algorithms (Artificial Neural Network - ANN, Logistic Regression - LR). The results obtained in the study can be effectively used for urban planning, minimizing the impact of the process of increasing the impervious surface on the urban environment

References

Asori M. & Adu P., 2023, Modeling the impact of the future state of land use land cover change patterns on land surface temperatures beyond the frontiers of greater Kumasi: A coupled cellular automaton (CA) and Markov chains approaches. Remote Sensing Applications: Society and Environment 29, 100908.

Azimand K., Aghighi H. & Matkan A., 2020, Classification and prediction of spatio-temporal Change of impervious urban surfaces and its impacts on urban heat intensity. Journal of Climate Research 11(41): 15–34.

Brabec E., Schulte S. & Richards P., 2002, Impervious surfaces and water quality: A review of current literature and its implications for watershed planning. Journal of Planning Literature 16(4): 499–514.

Bugday E. & Bugday S., 2019, Modeling and simulating land use/cover change using Artificial neural network from remote sensing data. CERNE 25(2), https://doi.org/10.1590/01047760201925022634

Chaula J., 2019, Ca-Markov Model for simulating Land use land cover dynamics in Rufiji delta of Tanzania. American Journal of Scientific Research and Essays 4, 27, p. 1–15.

Gharaibeh A., Shaamala A., Obeidat R. & Kofahi S., 2020, Improving land-use change modeling by integrating ANN with Cellular Automata-Markov Chain model. Heliyon 6(9), e05092. Doi:10.1016/j.heliyon.2020.e05092

Gong P., Li X., Wang J., Bai Y., Chen B., Hu T., Liu X., Xu B., Yang J., Zhang W. & Zhou Y., 2020, Annual maps of global artificial impervious area (GAIA) between 1985 and 2018. Remote Sensing of Environment 236, 111510.

https://data.opendevelopmentmekong.net.

Khawaldah H., 2016, A prediction of future land use/land cover in Amman area using GIS-based Markov model and remote sensing. Journal of Geographic Information System 8(3): 412–427. Doi: 10.4236/jgis.2016.83035

Li F., Li E., Zhang C., Samat A., Liu W., Li C. & Atkinson P., 2021, Estimating artificial impervious surface percentage in Asia by fusing multi-temporal MODIS and VIIRS nighttime light data. Remote Sensing 13, 212. https://doi.org/10.3390/rs13020212

Liu F., Zhao Y., Rizwan M., Liu X. & Chen M., 2020, Impervious surface expansion: a key indicator for environment and urban agglomeration - a case study of Guangdong-Hong Kong-Macao greater bay area by using Landsat data. Journal of Sensor 3, p. 1 –21.

Mahyoub S., Rhinane H., Mansour M., Fadil A. & Okaishi W., 2022, Impervious surface prediction in Marrakech city using Artificial Neural Network. International Journal of Advanced Computer Science and Applications (IJACSA) 13(7): 183–189.

Misagh N., Samani N. & Tomanain A., 2018, Simulation of urban development in Tabriz using CA-Markov model and multi-criteria decision making. Human Geography Research Quarterly 50(1): 217–231.

Qiao K., Zhu W., Hu D., Hao M., Chen S. & Cao S., 2018, Examining the distribution and dynamics of impervious surface in different function zones in Beijing. Journal of Geographical Sciences 28: 669–684.

Ramezani M., Yu B. & Che Y., 2021, Prediction of total imperviousness from population density and land use data for urban areas (case study: South East Queensland, Australia). Applied Sciences 11(21), 10044. https://doi.org/10.3390/app112110044

Saputra M. & Lee H., 2019, Prediction of land use and land cover changes for North Sumatra, Indonesia, using an Artificial Neural-Network based Cellular Automaton. Sustainability 11, 3024, p. 1-16.

Sati A. & Mohan M., 2018, The impact of urbanization during half a century on surface meteorology based on WRF model simulations over National Capital Region, India. Theoretical and Applied Climatology 134: 309–323.

Trinh L.H., Nguyen T.T.N., Vu D.T. & Bui T.P., 2017, Assessement and prediction of urban land use changes of Hanoi city using remote sensing and GIS techniques. Hochiminh city University of Education Journal of Science, Natural Sciences and Technology 14(3): 176 – 187.

Xu T., Li E., Samat A., Li Z., Liu W. & Zhang L., 2022, Estimating large-scale interannual dynamic impervious surface percentages based on regional divisions. Remote Sensing 14, 3786.

Yin Z., Kuang W., Bai Y. Dou Y., Chi W., Ochege F. & Pan T., 2021, Evaluating the dynamic changes of urban land and its fractional covers in Africa from 2000–2020 using time series of remotely sensed images on the big data platform. Remote Sensing 13(21), 4288, https://doi.org/10.3390/rs13214288

Washburn B., Yancey K. & Mendoza J., 2010, User’s guide for the California impervious surface coefficients. Office of Environmental Health Hazard Assessment, California Environmental Protection Agency. http://oehha.ca.gov/ ecotox/iscug123110.html

Downloads

  • pdf

Published

2024-03-18

How to Cite

1.
TRINH, Le Hung, PHAM, Van Tung, TRAN, Xuan Bien, NGUYEN, Van Trung, VU, Xuan Cuong, TONG, Thi Hanh and LE, Van Phu. Mapping impervious surface change from remote sensing and GIS data: A case study in Hochiminh city, Vietnam. Ecological Questions. Online. 18 March 2024. Vol. 35, no. 3, pp. 1-14. [Accessed 19 May 2025]. DOI 10.12775/EQ.2024.030.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 35 No. 3 (2024)

Section

Articles

License

Copyright (c) 2024 Le Hung Trinh, Van Tung Pham, Xuan Bien Tran, Van Trung Nguyen, Xuan Cuong Vu, Thi Hanh Tong, Van Phu Le

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 446
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

impervious surface, remote sensing, GIS, machine learning, Cellular Automata, Hochiminh city
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop