Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Ecological Questions

Spatial and temporal monitoring of wildfires in Golestan province using remote sensing data
  • Home
  • /
  • Spatial and temporal monitoring of wildfires in Golestan province using remote sensing data
  1. Home /
  2. Archives /
  3. Vol. 35 No. 3 (2024) /
  4. Articles

Spatial and temporal monitoring of wildfires in Golestan province using remote sensing data

Authors

  • Ebrahim Asadi Oskouei Climate Research Institute, Research Institute of Meteorology and Atmospheric Science (RIMAS), Mashhad, Iran
  • Seyed Omid Reza Shobairi University of Chinese Academy of Sciences, Beijing, 100049, China
  • Hadis Sadeghi Research Institute of Meteorology and Atmospheric Science (RIMAS), Tehran, Iran
  • Mojtaba Shokouhi Research Institute of Meteorology and Atmospheric Science (RIMAS), Tehran, Iran
  • Ebrahim Fatahi Research Institute of Meteorology and Atmospheric Science (RIMAS), Tehran, Iran
  • Leili Khazanedari 1Climate Research Institute, Research Institute of Meteorology and Atmospheric Science (RIMAS), Mashhad, Iran
  • Sun Lingxiao Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Xinjiang, China
  • Zhang Haiyan Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Xinjiang, China
  • Li Chunlan Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Xinjiang, China
  • He Jing Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Xinjiang, China
  • Qirghizbek Ayombekov Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Xinjiang, China

DOI:

https://doi.org/10.12775/EQ.2024.027

Keywords

wildfire, Kernel density function, Moran's index, Modis, Iran

Abstract

Wildfires are one of the most significant factors of ecosystem change. Knowing the wildfire regime (frequency, intensity, and distribution pattern) is essential in wildfire management. This research aims to analyze the spatiotemporal pattern of wildfires in Golestan in 2001-2021 using MODIS data, burned area product (MCD64A1). For this purpose, the annual and monthly frequency, as well as the trend of wildfires based on types of forest, pasture, and crop cover, were statistically analyzed. The local Moran pattern analysis method and kernel density function were used to analyze the spatial dynamics of wildfire. The results showed that 18,462 wildfires occurred in Golestan, the highest of which was in 2010, with 2,517 wildfires (13.8%). The lowest number of wildfires, with only 57 events (0.5%), was in 2001. Based on the local Moran model results and the kernel density function, the wildfires' extent and intensity were greater in the plains and foothills to the south and southeast of Golestan. The lowest extent and intensity of the wildfire corresponded to the eastern parts of the province. The frequency of wildfires was higher in the hot period of the year (spring and summer). However, the period of occurrence of wildfire and the peak of wildfire changes in different uses. The wildfire zones in June were wider and more intense than in other months. The frequency and spatial extent of wildfires in agricultural lands from May to July, pasture lands in July, August, and September, and forest lands in November and December were more than in other months. Weather conditions play a significant role in the occurrence of wildfire in the forest lands of Golestan. The results of this research help understand wildfire risk areas and provide a scientific basis for predicting and controlling wildfires and reducing carbon emissions related to them.

References

Abdi O., Kamkar B., Shirvani Z., Jaime A. Teixeira da Silva & Buchroithner M., 2018, Spatial-statistical analysis of factors determining forest fires: a case study from Golestan. Northeast Iran, Geomatics, Natural Hazards and Risk 9(1): 267-280. https://doi.org/10.1080/19475705.2016.1206629

Ahmad F., UddinM.M. & Goparaju L., 2018, Spatial analysis of fire characteristics along with various gradients of season, administrative units, vegetation, socio-economy, topography and future climate change: A case study of Orissa state in India. Ecological Questions 29(4): 9-22. http://dx.doi.org/10.12775/EQ.2018.027

Asadi Oskouei E., Delsouz Khaki B., Kouzegaran S., Navidi M.N., Haghighatd M., Davatgar N. & Lopez-Baeza E., 2022, Mapping climate zones of Iran using hybrid interpolation methods. Remote Sensing 14(11), 2632. https://doi.org/10.3390/rs14112632

Antonio X. & Ellis E.A., 2015, Forest fires and climate correlation in Mexico State: A report based on MODIS. Advances in Remote Sensing 4(4): 280-286. Doi: 10.4236/ars.2015.44023

Arisanty D., Muhaimin M., Rosadi D., Nur Saputra A., Puji Hastuti K. & Rajiani I., 2021, Spatiotemporal patterns of burned areas based on the geographic information system for fire risk monitoring. International Journal of Forestry Research 2021, p. 1-10. https://doi.org/10.1155/2021/2784474

Asadi M. & Karami M., 2017, Representation of temperature variability in Fars province using spatial statistics. Geographical Researches Quarterly 1: 64-75. http://georesearch.ir/article-1-103-en.html

Aleemahmoodi Sarab S., Feghhi J., Jabbarian Amiri B., Danehkar A. & Attarod P., 2013, Applying the regression models to assess the influences of climate factors on forest fires (case study: Izeh). Journal of Natural Environment 66(2): 191-201. Doi: 10.22059/jne.2013.35851

Alinai A., Gandomkar A. & Abbassi A., 2021, Spatiotemporal analysis of wildfire hazards in Lorestan province applying MODIS products. Geography and Environmental Sustainability 11(38): 113-127. https://sid.ir/paper/962285/en

Ayouzi M., Mosaedi A., Miftah Halaghi M. & Hossam M., 2018, Examining the frequency and continuity of different rainfall and drought conditions in Golestan province. https://sid.ir/paper/817180/fa

Azizi M., Khosravi M. & Pourreza M., 2020, Frequency of fire incidence in relation to Zagros forests and rangelands physiography (Kermanshah province) using MODIS active fire data. Forest and Range Protection Research 18(1(35): 42-55). https://sid.ir/paper/374344/en

Azizi M., Khosravi M. & Pourreza M., 2022, Time series model of fires forests and rangelands of Kermanshah province using MODIS data from 2002 to 2018. Iranian Journal of Forest and Range Protection Research 19(2): 279-296. Doi: 10.22092/ijfrpr.2021.354159.1475

Azizi Gh. & Yousofi Y., 2009, Foehn and forest fire in Mazandaran and Gilan provinces A case study: the forest fire from December 16 - 21, 2005. Geographical Research 92: 1-26. magiran, com/p867649

Bahadur Bhujel K., Prasad Sapkota R. & Raj Khadka U., 2022, Temporal and spatial distribution of forest fires and their environmental and socio-economic implications in Nepal. Journal of Forest and Livelihood 21(1): 1-13. https://forestaction.org/wp-content/uploads/2022/06/1_Bhujel-et-al

Banj Shafiei A., Beygi Heidarlou H.& Erfanian M., 2014, Forest fire risk mapping using analytical hierarchy process technique and frequency ratio method (case study: Sardasht forests, NW Iran). Iranian Journal of Forest and Poplar Research 22(4): 559-573. Doi: 10.22092/ijfpr.2015.13172

Banales-Seguel C., Dela Barrera F. & Salazar A., 2018, An analysis of wildfire risk and historical occurrence for a Mediterranean biosphere reserve, central Chile. Journal of Environmental Engineering and Landscape Management 26(2): 128-140. https://doi.org/10.3846/16486897.2017.1374280

Bolaño-Díaz S., Camargo-Caicedo Y.D., Soro T., Brigitte N’Dri A.R. & Bolaño-Ortiz T., 2022, Spatio-temporal characterization of fire using MODIS data (2000–2020) in Colombia. Fire 5(134): 1-12. https://doi.org/10.3390/fire5050134

Dashti S., Amini J., Ahmadi sani N. & Javanmard A., 2021, Zoning areas prone to fire occurrences in the forest ecosystems of North Zagros (case study: Sardasht forests in West Azarbaijan). Journal of Natural Environmental Hazards 10(30): 105-126. Doi: 10.22111/jneh.2021.34965.1683

Emami H. & Shahriyari H., 2020, Quantifying environmental and human factors affecting occurance and spread of wildfires using RS and GIS methods protected area of Arasbaran, Scientific-research quarterly of geographical data (SEPEHR) 28(112): 35-53. Doi: 10.22131/sepehr.2020.38606

Eskandari S., 2015, Investigation on the relationship between climate change and fire in the forests of Golestan province. Iranian Journal of Forest and Range Protection Research 13(1): 1-10. Doi: 10.22092/ijfrpr.2015.102383

Eskandari S. & Jalilvand H., 2017, Effect of weather changes on fire regime of Neka and Behshahr forests, Iranian Journal of Forest and Range Protection Research 15(1): 30-39. Doi: 10.22092/ijfrpr.2017.113331

Fan H., Yang X., Zhao C., Yang Y. & Shen Z., 2023, Spatio-temporal variation characteristics of global wildfire and their emissions. Atmospheric Chemistry and Physics 23: 7781-7798. https://doi.org/10.5194/acp-23-7781-2023

Farahi E., Daryaei M., Mohamadi S., Kioumars S.A. & Amlashi M., 2012, Review of fire sensitive areas with emphasis on drought impact with the joint use of PDSI, AHP AND GIS (case study: forest SARAVAN, GUILAN province). Forest and Range Protection Research 10(2): 83-101. https://sid.ir/paper/227754/en

Farajzadeh M., Ghavidel Rahimi Y. & Mokri S., 2015, The analysis of forest fires with climatic approach using satellite data in Alborz Area_ Iran. Journal of Spatial Analysis Environmental Hazards 2(3): 83-104. http://jsaeh.khu.ac.ir/article-1-2494-fa.html

Faramarzi H., Hosseini S.M., Ghajar I. & Gholamalifard M., 2014, Fire risk modeling using discriminant analysis and adaptive network based fuzzy inference system in the Golestan National Park. Emergency Management 3(1): 79-87. magiran.com/p1331833

Ghazanfar Pour H., Hasanzadeh S. & Hamedi M., 2017, Fire control management at the northern forests of Iran (case study: Golestan forest). Journal of Natural Environment Hazards 5(10): 61-78. https://sid.ir/paper/259111/en

Gholamrezaei A., Khosravi M. & Pourreza M., 2022, The relationship between wildfire areas and physiographic features in the Zagros vegetation area, Kermanshah province. Ifej 10(20): 183-192. http://ifej.sanru.ac.ir/article-1-465-fa.html

Giglio L., Boschetti L., Roy D.P., Humber M.L. & Justice C.O., 2018, The collection 6 MODIS burned area mapping algorithm and product. Remote Sens Environ. 217: 72-85. https://doi.org/10.1016/j.rse.2018.08.005

Gonzalez-Olabarria J.R., Mola-Yudegom B. & Coll L., 2015, Different factors for different causes: analysis of the spatial aggregations of fire ignitions in Catalonia (Spain). Risk Analysis 35(7): 1197-1209, https://doi.org/10.1111/risa.12339

Guo F., Innes L.J., Wang G., Ma X., Sun L., Hu H. & Su Z., 2015, Historic distribution and driving factors of human-caused fires in the Chinese Boreal Forest between1972 and 2005. Journal of Plant Ecology 8(5): 480-490, https://doi.org/10.1093/jpe/rtu041

Hasanalizadeh N., Mosaedi A., Zahiri A. & Babanezhad M., 2015, Determine of homogeneous regions distribution of annual rainfall in Golestan province using clustering and L-moments. Water and Soil 28(5): 1061-1071. Doi: 10.22067/jsw. v0i0.26319

Hedayati N., Joneidi H. & Ebrahimi Mohammadi S., 2019, Fire risk assessment of Kurdistan province natural areas using statistical index method. Journal of Natural Environment 72(3): 403-416. Doi: 10.22059/jne.2019.271708.1594

Janbazghobadi G., 2019, Investigation of forest fire hazard areas in Golestan province based on fire risk system index (FRSI) using the technique (GIS). Journal of Spatial Analysis Environmental Hazards 6(3): 89-102. https://sid.ir/paper/404268/en

Jafari U., Mohammadzadeh A. & Sarkargar A., 2015, Fire risk modeling using multi-criteria decision-making analysis based on satellite indexes. Environmental Researches 5(10): 121-134. magiran.com/p1384775

Kalbali E., Ziaee S., Najafabadi M.M. & Zakerinia M., 2021, Approaches to adapting to impacts of climate change in northern Iran: The application of a hydrogy-economics model. Journal of Cleaner Production 280, 124067. https://doi.org/10.1016/j.jclepro.2020.124067

Lewis S.L., Edwards D.P. & Galbraith D., 2015, Increasing human dominance of tropical forests. Science 349(6250): 827-32. Doi: 10.1126/science.aaa9932. PMID: 26293955.

Mirdeilami T., Shataee Sh. & Kavousi M.R., 2014, Forest fire risk zone mapping in the Golestan national park using weighted linear combination (WLC) method. Iranian Journal of Forest 5(4): 377-390. magiran.com/p1266356

Miranda B.R., Sturtevant B.R, Stewart S.I. & Hammer R.B., 2012, Spatial and temporal drivers of wildfire occurrence in the context of rural development in northern Wisconsin, USA. International Journal of Wildland Fire 21: 141-154. https://doi.org/10.1071/WF10133

Meftahhalaghi M. & Ghorbani K., 2015, Comparative study of climatic regions of Golestan province under different climate change scenarios. Journal of Water and Soil Conservation 22(5): 187-202.

Naftal B., Kija H., William CH., Noe CH., Anderson D., Stewart F. & Piel A., 2022, Spatial and temporal pattern of wildfires in the MasitoUgalla Ecosystem (2008-2019), Tanzania. IOSR Journal of Environmental Science, Toxicology and Food Technology 16(7): 12-19.

Nasiri M., Hojjati S.M. & Tafazoli M., 2012, Simulation of surface fire to study the spread rate of its distribution in mixed hardwood. Iranian Journal of Forest and Poplar Research 20(1): 50-61. Doi: 10.22092/ijfpr.2012.6100

Nhongo E., Fontana D. & Guasselli L., 2020, Spatio-temporal patterns of wildfires in the Niassa Reserve - Mozambique, using remote sensing data. bioRxiv preprint. https://doi.org/10.1101/2020.01.16.908780

Parchomenko A., Borsky S., 2018, Identifying phosphorus hot spots: A spatial analysis of the phosphorus balance as a result of manure application, Journal of Environmental Management, 214, 137-148, https://doi.org/10.1016/j.jenvman.2018.01.082.

Pahlavani P., Amin R. & Bigdeli B., 2020, Determining effective factors on forest fire using the compound of multivariate adaptive regression spline and genetic algorithm, a case study: Golestan, Iran. Journal of Spatial Analysis Environmental Hazards 6(4): 1-18. https://sid.ir/paper/404269/en

Parnian M., Asadi Oskouei E. & Rahnema M., 2021, Investigation of fire monitoring methods in vegetative areas of Iran and the world. Journal of Climate Research 1400(47): 101-120. https://clima.irimo.ir/article_142695_3290431492b2ef10c3e1ddf5899d572

Rahimi D. & Khademi S., 2018, Analysis synoptic patterns for forest fires risk in northern of Iran. Journal of Natural Environmental Hazards 7(17): 19-36. Doi: 10.22111/jneh.2017.3279

Rosenblatt M., 1956, Remarks on Some Nonparametric Estimates of a Density Function. The Annals of Mathematical Statistics 27: 832-837. http://dx.doi.org/10.1214/aoms/1177728190

Salsabila H., Sahitya A. & Mahyatar P., 2020, Spatio-temporal pattern analysis of forest fire event in South Kalimantan using integration remote sensing data and GIS for forest fire disaster mitigation. Earth and Environmental Science 540: 1-11. Doi: 10.1088/1755-1315/540/1/012011

Senande-Rivera M., Insua-Costa D. & Miguez-Macho G., 2022, Spatial and temporal expansion of global wildland fire activity in response to climate change. Nature Communications 13: 1-9. https://doi.org/10.1038/s41467-022-28835-2

Serra L., Saez M., Varga D., Tobías A., Juan P. & Mateu J., 2012, Spatio-temporal modelling of wildfires in Catalonia, Spain, 1994- 2008, through log Gaussian Cox processes. WIT Transactions on Ecology and The Environment 158: 39-49. http://dx.doi.org/10.2495/FIVA120041

Seydai S.E., Jahangir E., Darabkhani R. & Panahi A., 2020, Recognizing the eventful points of the axes of Alborz province using the kernel density method. Human Geography Research 52(3): 939-951. Doi: 10.22059/jhgr.2019.232146.1007447

Sharifnrjad T., Khavarian Nehzak H. & Saeid Varamesh S., 2021, Assessing the capability of Modis fire detector products in identifying fires in Golestan State. Journal of Natural Environmental Hazards 10(30): 1-16. Doi: 10.22111/jneh.2021.34138.1661

Shi K. & Touge Y., 2022, Characterization of global wildfire burned area spatiotemporal patterns and underlying climatic causes. Scientific Reports 12(644): 1-17. https://doi.org/10.1038/s41598-021-04726-2

Shokouhi M., Asadi Oskouei E., Sadeghi H. & Rahnama M., 2023, Calibration and evaluation of the Forest Fire Weather Index (FWI) in the Hamoun wetland area. Journal of Natural Environmental Hazards 1-1. Doi: 10.22111/jneh.2023.45016.1944

Silakhori E., Dahmardeh Ghaleno M.R. & Meshram S.G., 2022, To assess the impacts of climate change on runoff in Golestan Province, Iran. Nat Hazards 112: 281-300. https://doi.org/10.1007/s11069-021-05181-y

Varela V., Vlachogiannis D., Sfetsos A., Karozis S., Politi N. & Giroud F., 2019, Projection of forest fire danger due to climate change in the French Mediterranean region. Sustainability 11(16), 4284. https://doi.org/10.3390/su11164284

Villar-Hernández B., Pérez-Elizalde S., Rodríguez-Trejo R. & Pérez-Rodríguez P., 2022, Spatio-temporal analysis of wildfires occurrence in the Mexican State of Oaxaca. Revista Mexicana de Ciencias Forestales 13(74): 121-144. https://doi.org/10.29298/rmcf.v13i74.1274

White B., 2018, Spatiotemporal variation in fire occurrence in the state of Amazonas, Brazil, between 2003 and 2016. Amazonica 48(4): 358-367. https://doi.org/10.1590/1809-4392201704522

Yeremenko S., Sydorenko V., Pruskyi A., Shevchenko R. & Vlasenko Y., 2021, Existing Risks of Forest Fires in Radiation Contaminated Areas: A Critical Review. Ecological Questions 32(3): 35-47. http://dx.doi.org/10.12775/EQ.2021.022

Zeynali S., Hosseinali F., Sadeghi Niaraki A., Kazemi Beydokhti M. & Effati M., 2015, Spatial analysis of accidents at the suburban intersections using Kernel density estimation and spatial autocorrelation methods. Jgit 3(2): 21-42. http://jgit.kntu.ac.ir/article-1-229-fa.html

Zhang X., Lan M., Ming J., Zhu J. & Lo S., 2023, Spatiotemporal heterogeneity of forest fire occurrence based on remote sensing data: An analysis in Anhui, China. Remote Sens 15(3), 598. https://doi.org/10.3390/rs15030598

Zheng B., Ciais P., Chevallier F., Chuvieco E., Chen Y. & Yang H., 2021, Increasing Forest fire emissions despite the decline in global burned area. Science Advances 7(39), eabh2646. https://doi.org/10.1126%2Fsciadv.abh2646

Zheng Z., Wang L., Xue N. & Du Z., 2021, Spatiotemporal analysis of active fires in the Arctic region during 2001–2019 and a fire risk assessment model. Fire 4(57): 1-22. https://doi.org/10.3390/fire4030057

Downloads

  • pdf

Published

2024-03-17

How to Cite

1.
ASADI OSKOUEI, Ebrahim, SHOBAIRI, Seyed Omid Reza, SADEGHI, Hadis, SHOKOUHI, Mojtaba, FATAHI, Ebrahim, KHAZANEDARI, Leili, LINGXIAO, Sun, HAIYAN, Zhang, CHUNLAN, Li, JING, He and AYOMBEKOV, Qirghizbek. Spatial and temporal monitoring of wildfires in Golestan province using remote sensing data. Ecological Questions. Online. 17 March 2024. Vol. 35, no. 3, pp. 1-24. [Accessed 5 July 2025]. DOI 10.12775/EQ.2024.027.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 35 No. 3 (2024)

Section

Articles

License

Copyright (c) 2024 Seyed Omid Reza Shobairi, Ebrahim Asadi Oskouei, Hadis Sadeghi, Mojtaba Shokouhi; Ebrahim Fatahi, Leili Khazanedari; Sun Lingxiao, Zhang Haiyan, Li Chunlan, He Jing, Qirghizbek Ayombekov

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 445
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

wildfire, Kernel density function, Moran's index, Modis, Iran
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop