Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Ecological Questions

Effect of light stress on maximum photochemical efficiency of photosystem II and chloroplast structure in cryptogams Cladonia mitis and Pleurozium schreberi
  • Home
  • /
  • Effect of light stress on maximum photochemical efficiency of photosystem II and chloroplast structure in cryptogams Cladonia mitis and Pleurozium schreberi
  1. Home /
  2. Archives /
  3. Vol. 35 No. 3 (2024) /
  4. Articles

Effect of light stress on maximum photochemical efficiency of photosystem II and chloroplast structure in cryptogams Cladonia mitis and Pleurozium schreberi

Authors

  • Patrycja Dziurowicz Jagiellonian University https://orcid.org/0000-0002-1780-7279
  • Patrycja Fałowska Uniwersytet Jagielloński w Krakowie https://orcid.org/0000-0003-3298-8319
  • Karolina Waszkiewicz Uniwersytet Jagielloński w Krakowie
  • Paulina Wietrzyk-Pełka Uniwersytet Jagielloński w Krakowie https://orcid.org/0000-0002-1324-2012
  • Michał Węgrzyn Uniwersytet Jagielloński w Krakowie https://orcid.org/0000-0001-7638-4803

DOI:

https://doi.org/10.12775/EQ.2024.039

Keywords

Photosynthetic activity, light stress, fluorescence, chloroplast, lichens, bryophyte

Abstract

Lichens and bryophytes are cosmopolitan organisms found in diverse environments with varying sunlight availability. However, excessive light can be a stress factor for both lichens and bryophytes, as it can damage their photosynthetic apparatus, particularly the chlorophyll a and b pigments located in the chloroplasts. The measurement of photosynthetic activity and the use of fluorescence microscopy allows the assessment of the influence of light as a stress factor on the preservation state of the thallus. The main goal of our research was to determine the changes that occur in the photosynthetic activity and structure of chloroplasts of selected species lichen Cladonia mitis (Sandst.) and moss Pleurozium schreberi (Willd. Ex Brid.) under the influence of different light intensity in laboratory conditions: FL - 100% light, RL - 30% maximum light, and NL - natural sunlight. The results of the two-factor analysis of variance (ANOVA) tests showed a variation in the activities of the selected species over time depending on the amount of light energy supplied. It was also demonstrated that soaking lichens increased their photosynthetic activity, whereas in bryophytes, it had the opposite effect, decreasing it. The microscopic results showed that Cladonia mitis showed the lowest level of chloroplast fluorescence in the strongest and reduced light, which coincides with its low level of photosynthetic activity. The mosses exhibited strong fluorescence activity of the chloroplasts, suggesting its significantly higher resistance to light radiation.

References

Allorent G., Tokutsu R., Roach T., Peers G., Cardol P., Girard-Bascou J., Seigneurin-Berny D., Petroutsos D., Kuntz M., Breyton C., Franck F., Wollman F. A., Niyogi K., Krieger-Liszkay A., Minagawa J., Finazzi G., 2013, A dual strategy to cope with high light in Chlamydomonas reinhardtii, TPJ 25(2):545–557, https://doi.org/10.1105/tpc.112.108274

Barber J., Andersson B., 1992, Too much of a good thing: light can be bad for photosynthesis, TIBS 17(2): 61–66, https://doi.org/10.1016/0968-0004(92)90503-2

Beckett R., Minibayeva F., Solhaug K., Roach T., 2021, Photoprotection in lichens: Adaptations of photobions to high light, Lichenologist 53(1): 21–33, https://doi.org/10.1017/S0024282920000535

Bewley J.D., 1979, Physiological aspects of desiccation tolerance, Annu Rev Plant Physiol 30(1) 195–238, https://doi.org/10.1146/annurev.pp.30.060179.001211

Bilger W., Rimke S., Schreiber U., Lange O. L., 1989, Inhibition of energy-transfer to photosystem II in lichens by dehydration: different properties of reversibility with green and blue-green phycobionts, J Plant Physiol 134(3):261–268, https://doi.org/10.1016/S0176-1617(89)80240-8

Bolhàr-Nordenkampf H. R., Öquist G., 1993, Chlorophyll fluorescence as a tool in photosynthesis research. In: Hall DO, Scurlock JMO,

Bolhàr-Nordenkampf HR, Leegood RC, Long SP (eds.) Photosynthesis and Production in a Changing Environment. Springer, Dordrecht, https://doi.org/10.1007/978-94-011-1566-7_12

Boluda C. G., Rico V., Hawkswort D. L., 2014, Fluorescence microscopy as a tool for the visualization of lichen substances within Bryoria thalli, Lichenologist 46(5):723–726, https://doi.org/10.1017/S0024282914000292

Büdel B., Lange O. L., 1994, The role of cortical and epinecral layers in the lichen genus Peltula, Cryptogamic Botany 4:262–269

Charron A. J., Quatrano R. S., 2009, Between a rock and a dry place: the water-stressed moss, Mol Plant 2(3):478–486, https://doi.org/10.1093/mp/ssp018

Chen Y. E., Wu N., Zhang Z. W., Yuan M., Yuan S., 2019, Perspective of monitoring heavy metals by moss visible chlorophyll fluorescence parameters, Front Plant Sci 10(35), https://doi.org/10.3389/fpls.2019.00035

Chowaniec K., Rola K., 2022, Evaluation of the importance of ionic and osmotic components of salt stress on the photosynthetic efficiency of epiphytic lichens, Physiol Mol Biol Plants:1–15, https://doi.org/10.1007/s12298-022-01134-2

Davis P. A., Caylor S., Whippo C. W., Hangarter R. P., 2011, Changes in leaf optical properties associated with light-dependent chloroplast movements, Plant Cell Environ 34:2047–2059, https://doi.org/10.1111/j.1365-3040.2011.02402.x

Davis P. A., Hangarter R. P., 2012, Chloroplast movement provides photoprotection to plants by redistributing PSII damage within leaves, Photosynth Res 112:153–161, https://doi.org/10.1007/s11120-012-9755-4

De Carolis, R., Cometto, A., Moya, P., Barreno, E., Grube, M., Tretiach, M., D.leavitt, S., Muggia, L. (2022). Photobiont diversity in lichen symbioses from extreme environments. Frontiers in microbiology, 13, 809804, https://doi.org/10.3389/fmicb.2022.809804

de la Torre Noetzel R., Sancho L. G., Pintado A., Rettberg P., Rabbow E., Panitz C., Deutschmann U., Reina M., Horneck G., 2007, BIOPAN experiment LICHENS on the Foton M2 mission: pre-flight verification tests of the Rhizocarpon geographicum-granite ecosystem, ASR 40(11):1665–1671, https://doi.org/10.1016/j.asr.2007.02.022

de la Torre R., Horneck G., Sancho L. G., Pintado A., Scherer K., Facius R., Deutschmann U., Reina M., Baglioni P., Demets R., 2004, Studies of lichens from high mountain regions in outer space: the BIOPAN experiment, In: Harris RA, Ouwehand L (eds.) ESA Publications Division, Noordwijk, The Netherlands:193–194

De Vera J. P., Horneck G., Rettberg P., Ott S., 2004a, The potential of lichen symbiosis to cope with the extreme conditions of outer space II: Germination capacity of lichen ascospores in response to simulated space conditions. Adv Space Res 33:1236–1243 https://doi.org/10.1016/j.asr.2003.10.035

Demmig-Adams B., Adams W. W., 1992, Photoprotection and Other Responses of Plants to High Light Stress, Annu Rev Plant Physiol Plant Mol Biol 43:599–626, https://doi.org/10.1146/annurev.pp.43.060192.003123

Derks A., Schaven K., Bruce D., 2015, Diverse mechanisms for photoprotection in photosynthesis, Dynamic regulation of photosystem II excitation in response to rapid environmental change, BBA-Bioenergetics 1847(4-5):468–485, https://doi.org/10.1016/j.bbabio.2015.02.008

Dutta S., Cruz J. A., Jiao Y., Chen J., Kramer D. M., Osteryoung K. W., 2015, Non‐invasive, whole‐plant imaging of chloroplast movement and chlorophyll fluorescence reveals photosynthetic phenotypes independent of chloroplast photorelocation defects in chloroplast division mutants, TPJ 84(2):428–442, https://doi.org/10.1111/tpj.13009

Dziurowicz P., Fałowska P., Waszkiewicz K., Wietrzyk-Pełka P., Węgrzyn M. H., 2022, Changes in photosynthetic activity of the lichen Cladonia mitis and the Pleurozium schreberi under artificial high-energy lighting in laboratory, ABCbot 64/2 accepted article, https://doi.org/10.24425/abcsb.2022.143381

Ertl L., 1951, Über die Lichtverhältnisse in Laubflechten, Planta 39:245–270, https://doi.org/10.1007/BF01909397

Franklin L. A., Levavasseur G., Osmond C. B., Henley W. J., Ramus J., 1992, Two components of onset and recovery during photoinhibition of Ulva rotundata, Planta 187:399–408, https://doi.org/10.1007/BF00195321

Gaff D. F., 1989, Responses of desiccation tolerant ‘resurrection’ plants to water stress, In: Kreeb K. H., Richter H., Hinckley T. M. (eds) Structural and Functional Responses to Environmental Stresses SPB Academic Publishing:264–311

Gasulla F., del Campo E. M., Casano L. M., Guéra A., 2021, Advances in Understanding of Desiccation Tolerance of Lichens and Lichen-Forming Algae, Plants 10(4):807, https://doi.org/10.3390/plants10040807

Goss R., Lepetit B., 2015, Biodiversity of NPQ, J Plant Physiol 172:13–32, https://doi.org/10.1016/j.jplph.2014.03.004

Green T. A., Proctor M. C., 2016, Physiology of photosynthetic organisms within biological soil crusts: their adaptation, flexibility, and plasticity, Biocrusts: an organizing principle in drylands:347–381, https://doi.org/10.1007/978-3-319-30214-0_18

Green T. G. A., Sancho L. G., Pintado A., 2011, Ecophysiology of Desiccation/Rehydration Cycles in Mosses and Lichens, In: Lüttge U, Beck E, Bartels D (eds.) Plant Desiccation Tolerance, Ecol stud 215, Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-19106-0_6

Grimm M., Grube M., Schiefelbein U., Zühlke D., Bernhardt J., Riedel K., 2021, The lichens’ microbiota, still a mystery?, Front Microbiol 12:714, https://doi.org/10.3389/fmicb.2021.623839

Hájek T., Tuittila E. S., Ilomets M., Laiho R., 2009, Light responses of mire mosses–a key to survival after water‐level drawdown?, Oikos 118(2):240–250, https://doi.org/10.1111/j.1600-0706.2008.16528.x

He X., He K. S., Hyvönen J., 2016, Will bryophytes survive in a warming world?, PPEES 19:49–60, https://doi.org/10.1016/j.ppees.2016.02.005

Heber U., Lange O. L., Shuvalov V. A., 2006, Conservation and dissipation of light energy as complementary processes: homoiohydric and poikilohydric autotrophs, J Exp Bot 57(6):1211–1223, https://doi.org/10.1093/jxb/erj104

Heber U., Lüttge U., 2011, Lichens and Bryophytes: Light Stress and Photoinhibition in Desiccation/Rehydration Cycles – Mechanisms of Photoprotection, In: Lüttge U, Beck E, Bartels D (eds.) Plant Desiccation Tolerance ECOLSTUD 215, Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-19106-0_7

Holger T., Marie-Laurence A., David D., Joël B., 2014, Oxidative stress regulation in lichens and its relevance for survival in coastal habitats, Advances in Botanical Research 71:467–503, https://doi.org/10.1016/B978-0-12-408062-1.00016-0

Kappen L., Schroeter B., Scheidegger C., Sommerkorn M., Hestmark G., 1996, Cold resistance and metabolic activity of lichens below 0 C, ASR 18(12):119–128, https://doi.org/10.1016/0273-1177(96)00007-5

Kauppi M., 1980, Fluorescence microscopy and microfluorometry for the examination of pollution damage in lichens, Ann Bot Fenn:163–173

Kranner I., Zorn M., Turk B., Wornik S., Beckett R. P., Batič F., 2003, Biochemical traits of lichens differing in relative desiccation tolerance, New Phytol 160:167–176, https://doi.org/10.1046/j.1469-8137.2003.00852.x

Krause G. H., 1988, Photoinhibition of photosynthesis. An evaluation of damaging and protective mechanisms, Physiol Plant 74:566–574, https://doi.org/10.1111/j.1399-3054.1988.tb02020.x

Kumari, K., Kumar, V., Nayaka, S., Saxena, G., Sanyal, I. (2024). Physiological alterations and heavy metal accumulation in the transplanted lichen Pyxine cocoes (Sw.) Nyl. in Lucknow city, Uttar Pradesh. Environmental Monitoring and Assessment, 196(1), 1-16.https://doi.org/10.1007/s10661-023-12256-9

Lakatos M., 2011, Lichens and Bryophytes: habitats and species, In: Lüttge U, Beck E, Bartels D (eds.) Plant Desiccation Tolerance, Ecol stud 215:65–87, https://doi.org/10.1007/978-3-642-19106-0_5

Lan S., Wu L., Zhang D., Hu C., 2012, Composition of photosynthetic organisms and diurnal changes of photosynthetic efficiency in algae and moss crusts, Plant Soil 351(1):325–336, https://doi.org/10.1007/s11104-011-0966-9

Lange O. L., Büdel B., Heber U., Meyer A., Zellner H., Green T. G. A., 1993, Temperate rainforest lichens in New Zealand: high thallus water content can severely limit photosynthetic CO2 exchange, Oecologia 95(3):303–313, https://doi.org/10.1007/BF00320981

Liu, M., Zhang, Z., Gao, H., Yang, C., Fan, X., Cheng, D., 2014, Effect of leaf dehydration duration and dehydration degree on PSII photochemical activity of papaya leaves. Plant physiology and biochemistry, 82, 85-88, https://doi.org/10.1016/j.plaphy.2014.05.003

Liu Y., Cao T., Glime J., 2003, The Changes of Membrane Permeability of Mosses under High Temperature Stress, Bryologist 106(1):53–60, https://doi.org/10.1639/0007-2745(2003)106[0053:TCOMPO]2.0.CO;2

Lücking, R., Leavitt, S. D., Hawksworth, D. L., 2021, Species in lichen-forming fungi: balancing between conceptual and practical considerations, and between phenotype and phylogenomics. Fungal Diversity, 109(1), 99-154, https://doi.org/10.1007/s13225-021-00477-7

Maxwell K., Johnson G. N., 2000, Chlorophyll fluorescence—a practical guide, J Exp Bot 51(345):659–668, https://doi.org/10.1016/B978-0-12-408062-1.00016-0

Melis A., 1999, Photosystem-II damage and repair cycle in chloroplasts: what modulates the rate of photodamage in vivo?, Trends Plant Sci 4(4):130–135, https://doi.org/10.1016/S1360-1385(99)01387-4

Mkhize K. G. W., Minibayeva F., Beckett R. P., 2022, Lichen photobionts can be hardened to photoinhibition by pretreatment with light, Acta Physiol Plant 44(11):1–10, https://doi.org/10.1007/s11738-022-03458-8

Möller T., Porada P., Petersen I., 2022, The effect of water potential on the water balance of lichens and mosses – distribution patterns of internal and external water, PREPRINT Version 1 Res Sq https://doi.org/10.21203/rs.3.rs-1915047/v1

Nguyen K. H., Chollet-Krugler M., Gouault N., Tomasi S., 2013, UV-protectant metabolites from lichens and their symbiotic partners, Nat Prod Rep 30(12):1490–1508, https://doi.org/10.1039/C3NP70064J

Orekhova A., Barták M., Hájek J., Morkusová J., 2022, Species-specific responses of spectral reflectance and the photosynthetic characteristics in two selected Antarctic mosses to thallus desiccation, Acta Physiol Plant 44(1):1–19, https://doi.org/10.1007/s11738-021-03339-6

Otegui M. S., 2018, Vacuolar degradation of chloroplast components: autophagy and beyond, J Exp Bot 69(4):741–750, https://doi.org/10.1093/jxb/erx234

Pospíšil P., 2016, Production of reactive oxygen species by photosystem II as a response to light and temperature stress, Front Plant Sci 7:19–50, https://doi.org/10.3389/fpls.2016.01950

Quilhot W., Fernandez E., Hidalgo M. E., 1994, Photoprotection mechanisms against UV radiation, Brit Lichen Soc Bull 75:1–5

Ranković, B., Kosanić, M., 2019. Lichens as a potential source of bioactive secondary metabolites. Lichen secondary metabolites: bioactive properties and pharmaceutical potential, 1-29. https://doi.org/10.1007/978-3-030-16814-8_1

Rikkinen J., 1995, Whats behind the pretty colours. A study on the photobiology of lichens, Bryologist 4:1–239, https://doi.org/10.2307/3244316

Rochaix J. D., 2011, Regulation of photosynthetic electron transport, BBA-Bioenergetics 1807(3):375–383, https://doi.org/10.1016/j.bbabio.2010.11.010

Schlensog M., Schroeter B., 2001, A new method for the accurate in situ monitoring of chlorophyll a fluorescence in lichens and bryophytes, Lichenologist 33(5):443–452, https://doi.org/10.1006/lich.2001.0340

Sigfridsson B., 1980, Some effects of humidity on the light reaction of photosynthesis in the lichens Cladonia impexa and Collema flaccidum, Physiol Plant 49:320–6, https://doi.org/10.1111/j.1399-3054.1980.tb02671.x

Solhaug K. A., Gauslaa Y., 1996, Parietin, a photoprotective secondary product of the lichen Xanthoria parietina, Oecologia 108:412–418, https://doi.org/10.1007/BF00333715

Solhaug K. A., Gauslaa Y., 2004, Photosynthates stimulate the UV-B induced fungal anthraquinone synthesis in the foliose lichen Xanthoria parietina, Plant Cell Environ 27:167–176, https://doi.org/10.1111/j.1365-3040.2003.01129.x

Solhaug K. A., Gauslaa Y., Nybakken L., Bilger W., 2003, UV induction of sun-screening pigments in lichens, New Phytol 158:91–100, https://doi.org/10.1046/j.1469-8137.2003.00708.x

Suetsugu N., Wada M., 2012, Chloroplast photorelocation movement: a sophisticated strategy for chloroplasts to perform efficient photosynthesis, In Advances in Photosynthesis — Fundamental Aspects, InTech:215–234, ISBN 978-953-307-928-8

Takahashi T., 2019, Routine management of microalgae using autofluorescence from chlorophyll, Molecules 24(24):44–41, https://doi.org/10.3390/molecules24244441

Telfer A., 2005, Too much light? How β-carotene protects the photosystem II reaction centre, PPS 4(12), 950-956, https://doi.org/10.1039/B507888C

Tobias M., Niinemets Ü., 2010, Acclimation of photosynthetic characteristics of the moss Pleurozium schreberi to among‐habitat and within‐canopy light gradients, Plant Biol 12(5):743–754, https://doi.org/10.1111/j.1438-8677.2009.00285.x

Tuba Z., Csintalan Z., Proctor M. C., 1996, Photosynthetic responses of a moss, Tortula ruralis, ssp. ruralis, and the lichens Cladonia convoluta and C. furcata to water deficit and short periods of desiccation, and their ecophysiological significance: a baseline study at present‐day CO2 concentration, NEPHAV 133(2):353–361, https://doi.org/10.1111/j.1469-8137.1996.tb01902.x

Vera J. P. D., Möhlmann D., Butina F., Lorek A., Wernecke R., Ott S., 2010, Survival potential and photosynthetic activity of lichens under Mars-like conditions: a laboratory study, Astrobiology 10(2):215–227, https://doi.org/10.1089/ast.2009.0362

Veres K., Csintalan Z., Laufer Z., Engel R., Szabó K., Farkas E., 2022a, Photoprotection and high-light acclimation in semi-arid grassland lichens–a cooperation between algal and fungal partners, Symbiosis 86(1):33–48, https://doi.org/10.1007/s13199-021-00823-y

Veres K., Sinigla M., Szabó K., Varga N., Farkas E., 2022b, The long-term effect of removing the UV-protectant usnic acid from the thalli of the lichen Cladonia foliacea, Mycol Prog 21(9):1–13, https://doi.org/10.1007/s11557-022-01831-y

Wada M., 2013, Chloroplast movement, Plant Science 210:177–182, https://doi.org/10.1016/j.plantsci.2013.05.016

Węgrzyn M. H., Fałowska P., Alzayany K., Waszkiewicz K., Dziurowicz P., Wietrzyk-Pełka P., 2021, Seasonal changes in the photosynthetic activity of terrestrial lichens and mosses in the lichen scots pine forest habitat, Diversity 13, https://doi.org/10.3390/d13120642

Wobbe L., Bassi R., Kruse O., 2016, Multi-level light capture control in plants and green algae, Trends Plant Sci 21(1):55–68, https://doi.org/10.1016/j.tplants.2015.10.004

Wu L., Lei Y., Lan S., Hu C., 2017, Photosynthetic recovery and acclimation to excess light intensity in the rehydrated lichen soil crusts, PLoS One 12(3), https://doi.org/10.1371/journal.pone.0172537

Wynn-Williams D. D., Edwards H. G. M., Newton E. M., Holder J. M., 2002, Pigmentation as a survival strategy for ancient and modern photosynthetic microbes under high ultraviolet stress on planetary surfaces, Int J Astrobiology 1:39–49, https://doi.org/10.1017/S1473550402001039

Downloads

  • pdf

Published

2024-03-21

How to Cite

1.
DZIUROWICZ, Patrycja, FAŁOWSKA, Patrycja, WASZKIEWICZ, Karolina, WIETRZYK-PEŁKA, Paulina and WĘGRZYN, Michał. Effect of light stress on maximum photochemical efficiency of photosystem II and chloroplast structure in cryptogams Cladonia mitis and Pleurozium schreberi. Ecological Questions. Online. 21 March 2024. Vol. 35, no. 3, pp. 1-29. [Accessed 1 July 2025]. DOI 10.12775/EQ.2024.039.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 35 No. 3 (2024)

Section

Articles

License

Copyright (c) 2024 Patrycja Dziurowicz, Patrycja Fałowska, Karolina Waszkiewicz, Paulina Wietrzyk-Pełka, Michał Węgrzyn

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 402
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

Photosynthetic activity, light stress, fluorescence, chloroplast, lichens, bryophyte
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop