Assessment of Chlorophyll Content in Leaves of Crops and Orchards Based on SPAD, Multispectral, and Hyperspectral Techniques
DOI:
https://doi.org/10.12775/EQ.2024.025Keywords
crops, fruit trees, NDVI, Landsat-8, spectral profile, chlorophyll, orchardsAbstract
Strategic planning in developed and developing countries has significantly benefited from early assessment, identification and crop production monitoring. Remote sensing surveillance of crop health has brought significant benefits to farmers regarding early detection of latent issues, such as nutrient deficiencies or crop ailments, and taking remedial action. The study used geospatial techniques to monitor the orchards and crops of Halani in the Pakistani province of Sindh, using GeoEye and Landsat-8 satellite imagery. The absorbance of chlorophyll content in six fruit trees: mango (Mangifera indica L.), banana (Musa acuminata Colla), musambi (Citrus limetta Risso), kino (Citrus aurantium L.), lemon (Citrus limon (L.) Osbeck) and guava (Psidium guajava L.), as well as four crops: maise (Zea mays L.), rice (Oryza sativa L.), cotton (Gossypium herbaceum L.), and sugarcane (Saccharum) were recorded spectrophotometrically using a Beckman Coulter DU-530 single cell module spectrophotometer at 648 nm and 665 nm (homogenised in 100% ethanol), and non-destructive chlorophyll using a SPAD-502 portable chlorophyll meter (Minolta Corporation, New Jersey, USA) showed a strong positive correlation. The results of chlorophyll absorbance showed the same trend in crops through satellite data and laboratory analysis. Chlorophyll content and NDVI showed a positive correlation. The R² value for rice and banana was 0.9925 and 0.9578, respectively, while the SPAD and chlorophyll R² for rice was 0.838 and 0.75 for banana. The overall results indicate high chlorophyll content in the leaves of orchards rather than crops. The study's outcomes show that satellite data are a potentially reliable and resourceful tool for early assessment of the reliability of agricultural monitoring. The health and growth of crops can be monitored with satellite data, which are ultimately used for yield prediction, consequently helping growers strategically harvest and market.
References
Abubakar S.M., 2020, Pakistan 5th most vulnerable country to climate change. Reveals German watch report. Dawn.
Ahmad A., Ashfaq M., Rasul G., Wajid S.A., Khaliq T., Rasul F., Saeed U., Rahman M.H., Hussain J. & Baig I.A., 2015, Impact of climate change on the rice–wheat cropping system of Pakistan, [in:] C.Rosenzweig, D.Hillel (eds), Handbook of Climate Change and
Agroecosystems: The Agricultural Model Intercomparison and Improvement Project Integrated Crop and Economic Assessments. Imperial College Press, London, pp. 219–258. https://doi.org/10.1142/9781783265640_0019
Ahsan F., Chandio A.A. & Fang W., 2020, Climate change impacts on cereal crops production in Pakistan: evidence from cointegration analysis. International Journal of Climate Change Strategies and Management 12(2): 257-269. https://doi.org/10.1108/IJCCSM-04-2019-0020
Al-lami A.K, Abbood R.A., Al Maliki A.A., Al-Ansari N., 2021, Using Vegetation Indices for monitoring the spread of Nile Rose plant in the Tigris River within Wasit province, Iraq. Remote Sensing Applications: Society and Environment, ISSN 2352-9385, Vol. 22. https://doi.org/10.1016/j.rsase.2021.100471
Ali K.A., Noraldeen S.S. & Yaseen A.A., 2021, An evaluation study for chlorophyll estimation techniques. Sarhad Journal of Agriculture 37(4): 1458-1465. https://dx.doi.org/10.17582/journal.sja/2021/37.4.1458.1465
Anwar A., Younis M. & Ullah I., 2020, Impact of urbanization and economic growth on CO2 emission: a case of far East Asian countries. International Journal of Environmental Research and Public Health 17(7), 2531. https://doi 10.3390/ijerph17072531
Boori M. S., Paringer R.A., Choudhary K. & Kupriyanov A.V., 2018, Comparison of hyperspectral and multi-spectral imagery to building a spectral library and land cover classification performance. Computer Optics 42(6): 1035-1045. https://doi 10.18287/2412-6179-2018-42-6-1035-1045
Booth D.T. & Tueller P.T., 2003, Rangeland monitoring using remote sensing. Arid Land Research and Management 17(4): 455-467. https://doi 10.3934/environsci.2017.1.1
Braun M. & Herold M., 2004, Mapping imperviousness using NDVI and linear spectral unmixing of ASTER data in the Cologne-Bonn region (Germany). In remote sensing for environmental monitoring, gis applications, and geology iii 5239: 274-284. SPIE. DOI: 10.1117/12.510978
Brewer K., Clulow A., Sibanda M., Gokool S., Odindi J., Mutanga O., Naiken V., Chimonyo V.G. & Mabhaudhi T., 2022 Estimation of maize foliar temperature and stomatal conductance as indicators of water stress based on optical and thermal imagery acquired using an unmanned aerial vehicle (UAV) platform. Drones 6(7), 169. https://doi.org/10.3390/drones6070169
Chandio A. A., Magsi H. & Ozturk I., 2020, Examining the effects of climate change on rice production: case study of Pakistan. Environmental Science and Pollution Research 27: 7812-7822. https://doi.org/10.1007/s11356-019-07486-9
Chandio A.A., Jiang Y., Amin A., Ahmad M., Akram W. & Ahmad F., 2023, Climate change and food security of South Asia: fresh evidence from a policy perspective using novel empirical analysis. Journal of Environmental Planning and Management 66(1): 169-190. https://doi.org/10.1080/09640568.2021.1980378
Coops N.C., Stone C., Culvenor D.S., Chisholm L.A. & Merton R.N., 2003, Chlorophyll content in eucalypt vegetation at the leaf and canopy scales as derived from high resolution spectral data. Tree Physiology 23(1): 23-31. https://doi.org/10.1093/treephys/23.1.23
Davies K. (ed.), 2009, Annual plant reviews, plant pigments and their manipulation. John Wiley & Sons. DOI: 10.1093/aob/mci287
El-Hendawy S., Dewir Y.H., Elsayed S., Schmidhalter U., Al-Gaadi K., Tola E., Refay Y., Tahir M.U. & Hassan W.M., 2022, Combining hyperspectral reflectance indices and multivariate analysis to estimate different units of chlorophyll content of spring wheat under salinity conditions. Plants 11(3), 456. https://doi.org/10.3390/plants11030456
Ennouri K. & Kallel A., 2019, Remote sensing: An advanced technique for crop condition assessment. Mathematical Problems in Engineering (July 17, 2019): 1-9. https://doi.org/10.1155/2019/9404565
Falcioni R., Antunes W. C., Demattê J.A.M. & Nanni M.R., 2023, A Novel Method for Estimating Chlorophyll and Carotenoid Concentrations in Leaves: A Two Hyperspectral Sensor Approach. Sensors (Basel, Switzerland) 23(8), 3843. https://doi.org/10.3390/s23083843
Fassnacht F.E. Latifi H. & Koch, B., 2012, An angular vegetation index for imaging spectroscopy data-Preliminary results on forest damage detection in the Bavarian National Park, Germany. International Journal of Applied Earth Observation and Geoinformation 19: 308-321. https://doi.org/10.1016/j.jag.2012.05.018
Gitelson A.A., Gritz Y. & Merzlyak M.N., 2003, Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. Journal of plant physiology 160(3): 271-282. https://doi.org/10.1078/0176-1617-00887
Gu Z., Shi X., Li L., Yu D., Liu L. & Zhang W., 2011, Using multiple radiometric correction images to estimate leaf area index. International Journal of Remote Sensing 32(24): 9441-9454. https://doi.org/10.1080/01431161.2011.562251
Gumma M.K., Tummala K., Dixit S., Collivignarelli F., Holecz F., Kolli R.N. & Whitbread A.M., 2022, Crop type identification and spatial mapping using Sentinel-2 satellite data with focus on field-level information. Geocarto International 37(7): 1833-1849. https://doi.org/10.1080/10106049.2020.1805029
Hassan S.S. & Goheer M.A., 2021, Modeling and Monitoring Wheat Crop Yield Using Geospatial Techniques: A Case Study of Potohar Region, Pakistan. Journal of the Indian Society of Remote Sensing 49(6): 1331-1342. https://doi.org/10.1007/s12524-020-01290-6
Henebry G.M., 2011, Remote sensing of vegetation: Principles, techniques, and applications. Bioscience 61(7): 568-569. https://doi.org/10.1111/j.1654-1103.2011.01319.x
Hill E.C., Renner K.A. & Sprague C.L., 2016, Cover crop impact on nitrogen availability and dry bean in an organic system. Agronomy Journal 108(1): 329-341. https://doi.org/10.2134/agronj2015.0164
Hosseini M., Sadeghiand B. & Aghamiri S.A., 2004 Influence of foliar fertilization on yield of saffron (Crocus sativus L.), [in:] Ist International Symposium on Saffron Biology and Biotechnology 650: 207-209. DOI: 10.17660/ActaHortic.2004.650.22
Huang C., Wylie B., Yang L., Homer C. & Zylstra G., 2002, Derivation of a tasselled cap transformation based on Landsat 7 at-satellite reflectance. International Journal of Remote Sensing 23(8): 1741-1748. https://doi.org/10.1080/01431160110106113
Ishaque W., Tanvir R. & Mukhtar M., 2022, Climate Change and Water Crises in Pakistan: Implications on Water Quality and Health Risks. Journal of Environmental and Public Health, 2022: 1-12. DOI: 10.1155/2022/5484561
Jeganathan C., Dash J. & Atkinson, P.M., 2010, Mapping the phenology of natural vegetation in India using a remote sensing-derived chlorophyll index. International Journal of Remote Sensing, 31(22): 5777-5796. DOI: 10.1080/01431161.2010.512303
Jog S. & Dixit M., 2016, Supervised classification of satellite images, [in:] Conference on Advances in Signal Processing (CASP), 2016: 93-98. IEEE. DOI: 10.1109/CASP.2016.7746144
Jones C.L., Weckler P.R., Maness N.O., Jayasekara R., Stone M.L. & Chrz D., 2007, Remote sensing to estimate chlorophyll concentration in spinach using multi-spectral plant reflectance. Transactions of the ASABE 50(6): 2267-2273. DOI: 10.13031/2013.24079
Luo L., 2021, Research on Image Classification Algorithm Based on Convolutional Neural Network, [in:] Journal of Physics: Conference Series 2083 (3): 032054. DOI: 10.1088/1742-6596/2083/3/032054
Matsushita B., Yang W., Chen J., Onda Y. & Qiu G., 2007, Sensitivity of the enhanced vegetation index (EVI) and normalized difference vegetation index (NDVI) to topographic effects: a case study in high-density cypress forest. Sensors 7(11): 2636-2651. https://doi.org/10.3390/s7112636
Munawar S., Rahman G., Miandad M., Khan M.A., Ashraf H. & Yousafzai S., 2023, Impact of climate change on snow covered area over the transboundary Jhelum River basin of Himalayas region using Remote Sensing. Ecological Questions 34(2): 21-27. http://dx.doi.org/10.12775/EQ.2023.014
Narmilan A., Gonzalez F., Salgadoe A.S.A., Kumarasiri U.W. L.M., Weerasinghe H.A.S. & Kulasekara B.R., 2022, Predicting canopy chlorophyll content in sugarcane crops using machine learning algorithms and spectral vegetation indices derived from UAV multispectral imagery. Remote Sensing 14(5), 1140. https://doi.org/10.3390/rs14051140
Noda H.M., Muraoka H. & Nasahara K.N., 2021 Plant ecophysiological processes in spectral profiles: perspective from a deciduous broadleaf forest. Journal of Plant Research 134(4): 737-751. https://doi.org/10.1007/s10265-021-01302-7
Pech-May F., Aquino-Santos R., Rios-Toledo G. & Posadas-Durán J.P.F., 2022, Mapping of land cover with optical images, supervised algorithms, and google earth engine. Sensors 22(13), 4729. https://doi.org/10.3390/s22134729
Rembold F. Atzberger C. Savin I. & Rojas O., 2013 Using low resolution satellite imagery for yield prediction and yield anomaly detection. Remote Sensing 5(4): 1704-1733. https://doi.org/10.3390/rs5041704
Reynolds C.A., Yitayew M., Slack D.C., Hutchinson C.F., Huete, A. & Petersen M.S., 2000. Estimating crop yields and production by integrating the FAO Crop Specific Water Balance model with real-time satellite data and ground-based ancillary data. International Journal of Remote Sensing 21(18): 3487-3508. https://doi.org/10.1080/014311600750037516
Ritchie R.J., 2006, Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynthesis Research 89: 27-41. https://doi.org/10.1007/s11120-006-9065-9
Rosevear M.J., Young A.J. & Johnson G.N., 2001, Growth conditions are more important than species origin in determining leaf pigment content of British plant species. Functional Ecology 15(4): 474-480. https://doi.org/10.1046/j.0269-8463.2001.00540.x
Schmedtmann J. & Campagnolo M.L., 2015, Reliable crop identification with satellite imagery in the context of common agriculture policy subsidy control. Remote Sensing 7(7): 9325-9346. https://doi.org/10.3390/rs70709325
Shrestha A., Bheemanahalli R., Adeli A., Samiappan S., Czarnecki J.M.P., McCraine C.D., Reddy K.R. & Moorhead R., 2023, Phenological stage and vegetation index for predicting corn yield under rainfed environments. Frontiers in Plant Science, 14, 1168732. https://doi.org/10.3389/fpls.2023.1168732
Sinha B.B. & Dhanalakshmi R., 2022, Recent advancements and challenges of Internet of Things in smart agriculture: A survey. Future Generation Computer Systems 126: 169-184. https://doi.org/10.1016/j.future.2021.08.006
Snevajs H., Charvat K., Onckelet V., Kvapil J., Zadrazil F., Kubickova H., Seidlova J. & Batrlova I., 2022, Crop Detection Using Time Series of Sentinel-2 and Sentinel-1 and Existing Land Parcel Information Systems. Remote Sensing 14(5), 1095. https://doi.org/10.3390/rs14051095
Soudani K., Hmimina G., Delpierre N., Pontailler J.Y., Aubinet M., Bonal D., Caquet B., De Grandcourt A., Burban B., Flechard C. & Guyon D., 2012, Ground-based Network of NDVI measurements for tracking temporal dynamics of canopy structure and vegetation phenology in different biomes. Remote Sensing Environment 123: 234-45. https://doi.org/10.1016/j.rse.2012.03.012
Strzałka K., Kostecka-Gugała A. & Latowski D., 2003, Carotenoids and environmental stress in plants: significance of carotenoid-mediated modulation of membrane physical properties. Russian Journal of Plant Physiology 50: 168-173. https://doi.org/10.1023/A:1022960828050
Sumanta N., Haque C.I., Nishika J. & Suprakash R., 2014, Spectrophotometric analysis of chlorophylls and carotenoids from commonly grown fern species by using various extracting solvents. Research Journal of Chemical Sciences 2231: 606X. DOI: 10.1055/s-0033-1340072
Tesfaye Aklilu Andualem & Awoke Gessesse Berhan, 2021, Evaluation of the saturation property of vegetation indices derived from sentinel-2 in mixed crop-forest ecosystem. Spatial Information Research 29(1): 109-121. https://doi.org/10.1007/s41324-020-00339-5
Wang K., Li Z. & Cribb M., 2006, Estimation of evaporative fraction from a combination of day and night land surface temperatures and NDVI: A new method to determine the Priestley–Taylor parameter. Remote Sensing of Environment 102(3-4): 293-305. https://doi.10.1016/j.rse.2006.02.007
Wang Q., Feng X., Liu Y., Li W., Cui W., Sun Y., Zhang S., Wang F. & Xing B., 2023, Response of peanut plant and soil N-fixing bacterial communities to conventional and biodegradable microplastics. Journal of Hazardous Materials 459, 132142. https://doi.org/10.1016/j.jhazmat.2023.132142
WFO, 2023, World Flora Online. Published on the Internet. http://www.worldfloraonline.org [Accessed on: 03 December 2023].
Whitcraft A.K., Becker-Reshef I. & Justice C.O., 2015, A framework for defining spatially explicit earth observation requirements for a global agricultural monitoring initiative (GEOGLAM). Remote Sensing 7(2): 1461-1481. https://doi.org/10.3390/rs70201461
Wu B., Zhang M., Zeng H., Tian F., Potgieter A.B, Qin X., Yan N., Chang S., Zhao Y., Dong Q. & Boken V., 2023, Challenges and opportunities in remote sensing-based crop monitoring: a review. National Science Review 10(4), nwac290. https://doi.org/10.1093/nsr/nwac290
Xue X., Wang Z. & Hou S., 2023, NDVI-Based Vegetation Dynamics and Response to Climate Changes and Human Activities in Guizhou Province, China. Forests 14(4), 753. https://doi.org/10.3390/f14040753
Zhang Lei, Jia Qu, Dongwei Gui, Qi Liu, Zeeshan Ahmed, Yi Liu & Zhiming Qi., 2022, Analysis of desertification combating needs based on potential vegetation NDVI—A case in the Hotan Oasis. Front. Plant Sci., Sec. Sustainable and Intelligent Phytoprotection, Volume 13. https://doi.org/10.3389/fpls.2022.1036814
Zhu J., Tremblay N. & Liang Y., 2012, Comparing SPAD and at LEAF values for chlorophyll assessment in crop species. Canadian Journal of Soil Science 92(4): 645-648. https://doi.org/10.4141/cjss2011-100
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Nadia Niaz, Salman Gulzar, Jamil Hasan Kazmi, Sughra Aleem, Mai-Phuong Pham, Monika Mierzwa-Hersztek, Samreen Riaz Ahmed, Altaf Hussain Lahori, Zainab Noor Mushtaq
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 559
Number of citations: 0