Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Ecological Questions

Effect of litter decomposition on mowing and plant composition change during Solidago stand restoration
  • Home
  • /
  • Effect of litter decomposition on mowing and plant composition change during Solidago stand restoration
  1. Home /
  2. Archives /
  3. Vol. 35 No. 3 (2024) /
  4. Articles

Effect of litter decomposition on mowing and plant composition change during Solidago stand restoration

Authors

  • Chathura Perera Institute of Agroecology and Plant Production, Wrocław University of Environmental and Life Sciences, Grunwaldzki Sq 24a, 50-363 Wrocław, Poland https://orcid.org/0000-0001-7415-7236
  • Iwona Gruss Department Of Plant Protection, Wrocław University of Environmental and Life Sciences, Grunwaldzki Sq 24a, 50-363 Wrocław, Poland https://orcid.org/0000-0002-3562-5962
  • Magdalena Szymura Institute of Agroecology and Plant Production, Wrocław University of Environmental and Life Sciences, Grunwaldzki Sq 24a, 50-363 Wrocław, Poland https://orcid.org/0000-0002-5726-7393

DOI:

https://doi.org/10.12775/EQ.2024.026

Keywords

Decomposition rates, goldenrod, ecosystem services, plant invasion, grassland, ecosystem restoration

Abstract

Decomposition of organic matter supports important soil ecosystem services. The rate of decomposition depends mostly on the type of plant material being decomposed and the abundance and diversity of organisms that process the organic matter. Consequently, any disturbance to the soil ecosystem will affect the decomposition process. Invasive plants, such as Solidago species, pose a serious ecological threat to natural habitats, so effective and environmentally safe methods of controlling their occurrence should be developed. In this study, decomposition rates were used as indicators of soil health during grassland restoration after Solidago invasion. Different seed mixtures (grasses, grasses with legumes, seeds collected from a seminatural meadow; use of fresh hay and no seeds) were sown during a field experiment and different mowing frequencies (1, 2 and 3 times per year) were established. Two hypotheses were tested: (1) plant species composition used in the restoration process affects litter decomposition rates, and (2) mowing regimes affect litter decomposition rates. It was found that decomposition rates were higher in plots with the highest species diversity. This indicates that an increase in species diversity has a positive effect on soil processes. Secondly, mowing two and three times per season has a positive effect on the decomposition process. In conclusion, decomposition rates can be used as a tool to identify adequate grassland management.

References

Bärlocher F., Gessner M.O. & Garca M.O.S., 2020, Methods to study litter decomposition, 329 pp. Cham, Switzerland: Springer International Publishing. https://link.springer.com/content/pdf/10.1007/978-3-030-30515-4.pdf

Benitez L., Kendig A.E., Adhikari A., Clay K., Harmon P.F., Holt R.D., Goss E.M. & Flory S.L., 2022, Invasive grass litter suppresses a native grass species and promotes disease. Ecosphere 13(1): 1–11. https://doi.org/10.1002/ecs2.3907

Bobulská L., Demková L., Čerevková A. & Renčo M., 2019, Invasive goldenrod (Solidago gigantea) influences soil microbial activities in forest and grassland ecosystems in central Europe. Diversity 11(8). https://doi.org/10.3390/d11080134

Breymeyer A. & Laskowski R., 1999, Ecosystem process studies along a climatic transect at 52-53 N (12-32 E): pine litter decomposition. Geographia Polonica 72: 45-64.

Chen S., Ding S., Tang K. & Liu Y., 2022a, Invasive plant indirectly regulates native plant decomposition by affecting invertebrate communities. Limnologica 92(November 2021), 125939. https://doi.org/10.1016/j.limno.2021.125939

Chen S., Xiao H., Xie X., Liu Y., Liu Q., Zhang B. & Deng Y., 2022b, Invasive plant mats promoted the decomposition of native leaf litter by micro-, meio-, and macroinvertebrates in an eutrophic freshwater lake in the Three Gorges Reservoir area, China. Hydrobiologia 849(1): 215–227. https://doi.org/10.1007/s10750-021-04721-8

Chmolowska D., Elhottová D., Krištůfek V., Kozak M., Kapustka F. & Zubek S., 2017, Functioning grouped soil microbial communities according to ecosystem type, based on comparison of fallows and meadows in the same region. Science of the Total Environment, 599–600, 981–991. https://doi.org/10.1016/j.scitotenv.2017.04.220

Dekanová V., Svitková I., Novikmec M. & Svitok M., 2021, Litter breakdown of invasive alien plant species in a pond environment: Rapid decomposition of Solidago canadensis may alter resource dynamics. Limnologica 90(August). https://doi.org/10.1016/j.limno.2021.125911

Fugère V., Lostchuck E. & Chapman L.J., 2020, Litter decomposition in afrotropical streams: Effects of land use, home-field advantage, and terrestrial herbivory. Freshwater Science, 39(3): 497–507. https://doi.org/10.1086/709807

Gong S., Guo R., Zhang T. & Guo J., 2015, Warming and nitrogen addition increase litter decomposition in a temperate meadow ecosystem. PLoS ONE 10(3): 1–14. https://doi.org/10.1371/journal.pone.0116013

He Y.H., Rutherford S., Javed Q., Wan J.S.H., Ren G.Q., Hu W.J., Xiang Y., Zhang Y., Sun J.F. & Du D.L., 2022, Mixed litter and incubation sites drive non-additive responses in seed germination and seedling growth of lettuce. Biochemical Systematics and Ecology 105(July), 104479. https://doi.org/10.1016/j.bse.2022.104479

Helsen K., Smith S.W., Brunet J., Cousins S.A.O., De Frenne P., Kimberley A., Kolb A., Lenoir J., Shiyu M.A., Michaelis J., Plue J., Verheyen K., Speed J.D.M. & Graae B.J., 2018, Impact of an invasive alien plant on litter decomposition along a latitudinal gradient. Ecosphere 9(1). https://doi.org/10.1002/ecs2.2097

Hu X., Arif M., Ding D., Li J., He X. & Li C., 2022a, Invasive Plants and Species Richness Impact Litter Decomposition in Riparian Zones. Frontiers in Plant Science 13(July): 1–14. https://doi.org/10.3389/fpls.2022.955656

Hu Z., Zhang J., Du Y., Shi K., Ren G., Iqbal B., Dai Z., Li J., Li G. & Du D., 2022b, Substrate availability regulates the suppressive effects of Canada goldenrod invasion on soil respiration. Journal of Plant Ecology, 15(3): 509–523. https://doi.org/10.1093/jpe/rtab073

Huhta A., Rautio P., Tuomi J. & Laine K., 2001, Restorative mowing on an abandoned semi‐natural meadow: short‐term and predicted long‐term effects. Journal of Vegetation Science 12(5): 677–686. https://doi.org/10.2307/3236908

Incerti G., Cartenì F., Cesarano G., Sarker T.C., Abd El-Gawad A.M., D’Ascoli R., Bonanomi G. & Giannino F., 2018, Faster N release, but not C loss, from leaf litter of invasives compared to native species in mediterranean ecosystems. Frontiers in Plant Science 9(April): 1–12. https://doi.org/10.3389/fpls.2018.00534

Kawałko D., Halarewicz A., Kaszubkiewicz J. & Jezierski P., 2017, Tempo dekompozycji opadu organicznego podczas przemian siedlisk łęgowych. Sylwan 161(07): 565–572.

LaForgia M.L., 2021, Impacts of invasive annual grasses and their litter vary by native functional strategy. Biological Invasions 23(8): 2621–2633. https://doi.org/10.1007/s10530-021-02527-2

Leicht-Young S.A., O’Donnell H., Latimer A.M. & Silander J.A., 2009, Effects of an invasive plant species, Celastrus orbiculatus, on soil composition and processes. American Midland Naturalist 161(2): 219–231. https://doi.org/10.1674/0003-0031-161.2.219

Li N., Nie M., Li B., Wu J. & Zhao J., 2021, Contrasting effects of the aboveground litter of native Phragmites australis and invasive Spartina alterniflora on nitrification and denitrification. Science of the Total Environment 764. https://doi.org/10.1016/j.scitotenv.2020.144283

Li W., Zhang C. & Peng C., 2012, Responses of soil microbial community structure and potential mineralization processes to Solidago canadensis invasion. Soil Science 177(7): 433–442. https://doi.org/10.1097/SS.0b013e318258f11e

Loydi A., Donath T.W., Otte A. & Eckstein R.L., 2015, Negative and positive interactions among plants: Effects of competitors and litter on seedling emergence and growth of forest and grassland species. Plant Biology 17(3): 667–675. https://doi.org/10.1111/plb.12287

Lukash O., Strilets S., Yakovenko O., Miroshnyk I., Dayneko N., Sliuta A., Kupchyk O., Morozova I. & Sazonova O., 2021, Prediction on the content of radionuclides and heavy metals of the Solidago canadensis L. use as a honey resource in Polesie. Ecological Questions 32(4): 35–47. http://dx.doi.org/10.12775/EQ.2021.032

Maan I., Kaur A., Sharma A., Singh H.P., Batish D.R., Kohli R.K. & Arora N.K., 2022, Variations in leaf litter decomposition explain invasion success of Broussonetia papyrifera over confamilial non-invasive Morus alba in urban habitats. Urban Forestry and Urban Greening, 67(April 2021), 127408. https://doi.org/10.1016/j.ufug.2021.127408

Madureira K.H. & Ferreira V., 2022, Colonization and decomposition of litter produced by invasive Acacia dealbata and native tree species by stream microbial decomposers. Limnetica 41(2): 201–218. https://doi.org/10.23818/limn.41.25

Meyer G., 2022, ‘Solidago gigantea (giant goldenrod)’, CABI Compendium. CABI International. https://doi.org/10.1079/cabicompendium.50575

Mori A.S., Cornelissen J.H.C., Fujii S., Okada K. & Isbell, F., 2020, A meta-analysis on decomposition quantifies afterlife effects of plant diversity as a global change driver. Nat. Commun. 11, 4547. https://doi.org/10.1038/s41467-020-18296-w

Pandey V.C., Rai A., Singh L. & Singh D.P., 2022, Understanding the Role of Litter Decomposition in Restoration of Fly Ash Ecosystem. Bulletin of Environmental Contamination and Toxicology 108(3): 389–395. https://doi.org/10.1007/s00128-020-02994-8

Pereira A., Figueiredo A. & Ferreira, V., 2021, Invasive Acacia Tree Species Affect Instream Litter Decomposition Through Changes in Water Nitrogen Concentration and Litter Characteristics. Microbial Ecology 82(1): 257–273. https://doi.org/10.1007/s00248-021-01749-0

Perera P.C.D., Gruss I., Twardowski J., Chmielowiec C., Szymura M. & Szymura T.H., 2022, The impact of restoration methods for Solidago-invaded land on soil invertebrates. Scientific Reports 12(1): 1-10. https://doi.org/10.1038/s41598-022-20812-5

Perera P.C.D., Chmielowiec C., Szymura T.H. & Szymura M. 2023, Effects of extracts from various parts of invasive Solidago species on the germination and growth of native grassland plant species. PeerJ 11, e1567. https://doi.org/10.7717/peerj.15676

Popay I. & Parker C., 2022, ‘Solidago canadensis (Canadian goldenrod)’, CABI Compendium. CABI International. https://doi.org/10.1079/cabicompendium.50599

Potthoff M., Steenwerth K.L., Jackson L.E., Drenovsky R.E., Scow K.M. & Joergensen R.G., 2006, Soil microbial community composition as affected by restoration practices in California grassland. Soil Biology and Biochemistry 38(7): 1851–1860. https://doi.org/10.1016/j.soilbio.2005.12.009

Rai P.K., 2022, Environmental Degradation by Invasive Alien Plants in the Anthropocene: Challenges and Prospects for Sustainable Restoration. Anthropocene Science 1(1): 5–28. https://doi.org/10.1007/s44177-021-00004-y

Rasran L., Vogt K. & Jensen K., 2007, Effects of litter removal and mowing on germination and establishment of two fen-grassland species along a productivity gradient. Folia Geobot 42: 271–288. https://doi.org/10.1007/BF02806467

Ruprecht E., Enyedi M.Z., Eckstein R.L. & Donath T.W., 2010, Restorative removal of plant litter and vegetation 40 years after abandonment enhances re-emergence of steppe grassland vegetation. Biological Conservation 143(2): 449–456. https://doi.org/10.1016/j.biocon.2009.11.012

Seastedt T.R., 1984, The role of microarthropods in decomposition and mineralization processes. Annual Review of Entomology 29: 25–46.

Sun F., Zeng L., Cai M., Chauvat M., Forey E., Tariq A., Graciano C., Zhang Z., Gu Y., Zeng F., Gong Y., Wang F. & Wang M., 2022a, An invasive and native plant differ in their effects on the soil food-web and plant-soil phosphorus cycle. Geoderma 410(October 2021), 115672. https://doi.org/10.1016/j.geoderma.2021.115672

Sun J., Rutherford S., Saif Ullah M., Ullah I., Javed Q., Rasool G., Ajmal M., Azeem A., Nazir M.J. & Du D., 2022b, Plant-soil feedback during biological invasions: Effect of litter decomposition from an invasive plant (Sphagneticola trilobata) on its native congener (S. calendulacea). Journal of Plant Ecology 15(3): 610–624. https://doi.org/10.1093/jpe/rtab095

Tokarska-Guzik B., Dajdok Z., Zając M., Zając A., Urbisz A., Danielewicz W. & Hołdyński C., 2014, Rośliny obcego pochodzeniaw Polsce ze szczególnym uwzględnieniem gatunków inwazyjnych [Allien plants in Poland with particular reference to invasive species]. Generalna Dyrekcja Ochrony Środowiska, Warszawa, 197 pp.

Ustinova E.N., Maslov M.N., Lysenkov S.N. & Tiunov A.V., 2022, Decomposition Rates and Community Structure of Arthropods in the Litter of Invasive Solidago gigantea Do Not Support the Home-Field Advantage Hypothesis. Russian Journal of Ecology 53(4): 328–334. https://doi.org/10.1134/S1067413622040063

Wang C., Wei M., Wang S., Wu B. & Du D., 2020a, Cadmium influences the litter decomposition of Solidago canadensis L. and soil N-fixing bacterial communities. Chemosphere 246(301). https://doi.org/10.1016/j.chemosphere.2019.125717

Wang J., Ge Y., Cornelissen J.H.C., Wang X.Y., Gao S., Bai Y., Chen T., Jing Z.W., Zhang C.B., Liu W.L., Li J.M. & Yu F.H., 2022, Litter nitrogen concentration changes mediate effects of drought and plant species richness on litter decomposition. Oecologia 198(2): 507–518. https://doi.org/10.1007/s00442-022-05105-y

Wang Y., Li F.Y., Song X., Wang X., Suri G. & Baoyin T., 2020b, Changes in litter decomposition rate of dominant plants in a semi-arid steppe across different land-use types: Soil moisture, not home-field advantage, plays a dominant role. Agriculture, Ecosystems & Environment 303, 107119. https://doi.org/10.1016/j.agee.2020.107119

Xie H., Knapp L.S.P., Yu M. & Wang G.G., 2022, Solidago canadensis invasion destabilizes the understory plant community and soil properties of coastal shelterbelt forests of subtropical China. Plant and Soil 484(1-2): 65–77. https://doi.org/10.1007/s11104-022-05739-0

Xu S., Li K., Li G., Hu Z., Zhang J., Iqbal B. & Du D., 2022, Canada Goldenrod Invasion Regulates the Effects of Soil Moisture on Soil Respiration. International Journal of Environmental Research and Public Health 19(23), 15446. https://doi.org/10.3390/ijerph192315446

Ye X.Q., Yan Y.N., Wu M. & Yu F.H., 2019, High capacity of nutrient accumulation by invasive Solidago canadensis in a coastal grassland. Frontiers in Plant Science, 10(May): 1–12. https://doi.org/10.3389/fpls.2019.00575

Yin R., Eisenhauer N., Auge H., Purahong W., Schmidt A. & Schädler M., 2019, Additive effects of experimental climate change and land use on faunal contribution to litter decomposition. Soil Biology and Biochemistry 131(September 2018): 141–148. https://doi.org/10.1016/j.soilbio.2019.01.009

Yu Y., Cheng H., Wang C. & Du D., 2022, Heavy drought reduces the decomposition rate of the mixed litters of two composite invasive alien plants. Journal of Plant Ecology. https://doi.org/10.1093/jpe/rtac047

Zhang L., Ma X., Wang H., Liu S., Siemann E. & Zou J., 2016, Soil Respiration and Litter Decomposition Increased Following Perennial Forb Invasion into an Annual Grassland. Pedosphere 26(4): 567–576. https://doi.org/10.1016/S1002-0160(15)60066-2

Zhong S., Xu Z., Yu Y., Cheng H., Wei M., Wang S., Du D. & Wang C., 2022, Acid deposition at higher acidity weakens the antagonistic responses during the co-decomposition of two Asteraceae invasive plants. Ecotoxicology and Environmental Safety, 243(August), 114012. https://doi.org/10.1016/j.ecoenv.2022.114012

Downloads

  • pdf

Published

2024-02-08

How to Cite

1.
PERERA, Peliyagodage Chathura Dineth, GRUSS, Iwona and SZYMURA, Magdalena. Effect of litter decomposition on mowing and plant composition change during Solidago stand restoration. Ecological Questions. Online. 8 February 2024. Vol. 35, no. 3, pp. 1-13. [Accessed 16 May 2025]. DOI 10.12775/EQ.2024.026.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 35 No. 3 (2024)

Section

Articles

License

Copyright (c) 2024 Chathura Perera, Iwona Gruss, Magdalena Szymura

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 393
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

Decomposition rates, goldenrod, ecosystem services, plant invasion, grassland, ecosystem restoration
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop