Effect of litter decomposition on mowing and plant composition change during Solidago stand restoration
DOI:
https://doi.org/10.12775/EQ.2024.026Keywords
Decomposition rates, goldenrod, ecosystem services, plant invasion, grassland, ecosystem restorationAbstract
Decomposition of organic matter supports important soil ecosystem services. The rate of decomposition depends mostly on the type of plant material being decomposed and the abundance and diversity of organisms that process the organic matter. Consequently, any disturbance to the soil ecosystem will affect the decomposition process. Invasive plants, such as Solidago species, pose a serious ecological threat to natural habitats, so effective and environmentally safe methods of controlling their occurrence should be developed. In this study, decomposition rates were used as indicators of soil health during grassland restoration after Solidago invasion. Different seed mixtures (grasses, grasses with legumes, seeds collected from a seminatural meadow; use of fresh hay and no seeds) were sown during a field experiment and different mowing frequencies (1, 2 and 3 times per year) were established. Two hypotheses were tested: (1) plant species composition used in the restoration process affects litter decomposition rates, and (2) mowing regimes affect litter decomposition rates. It was found that decomposition rates were higher in plots with the highest species diversity. This indicates that an increase in species diversity has a positive effect on soil processes. Secondly, mowing two and three times per season has a positive effect on the decomposition process. In conclusion, decomposition rates can be used as a tool to identify adequate grassland management.
References
Bärlocher F., Gessner M.O. & Garca M.O.S., 2020, Methods to study litter decomposition, 329 pp. Cham, Switzerland: Springer International Publishing. https://link.springer.com/content/pdf/10.1007/978-3-030-30515-4.pdf
Benitez L., Kendig A.E., Adhikari A., Clay K., Harmon P.F., Holt R.D., Goss E.M. & Flory S.L., 2022, Invasive grass litter suppresses a native grass species and promotes disease. Ecosphere 13(1): 1–11. https://doi.org/10.1002/ecs2.3907
Bobulská L., Demková L., Čerevková A. & Renčo M., 2019, Invasive goldenrod (Solidago gigantea) influences soil microbial activities in forest and grassland ecosystems in central Europe. Diversity 11(8). https://doi.org/10.3390/d11080134
Breymeyer A. & Laskowski R., 1999, Ecosystem process studies along a climatic transect at 52-53 N (12-32 E): pine litter decomposition. Geographia Polonica 72: 45-64.
Chen S., Ding S., Tang K. & Liu Y., 2022a, Invasive plant indirectly regulates native plant decomposition by affecting invertebrate communities. Limnologica 92(November 2021), 125939. https://doi.org/10.1016/j.limno.2021.125939
Chen S., Xiao H., Xie X., Liu Y., Liu Q., Zhang B. & Deng Y., 2022b, Invasive plant mats promoted the decomposition of native leaf litter by micro-, meio-, and macroinvertebrates in an eutrophic freshwater lake in the Three Gorges Reservoir area, China. Hydrobiologia 849(1): 215–227. https://doi.org/10.1007/s10750-021-04721-8
Chmolowska D., Elhottová D., Krištůfek V., Kozak M., Kapustka F. & Zubek S., 2017, Functioning grouped soil microbial communities according to ecosystem type, based on comparison of fallows and meadows in the same region. Science of the Total Environment, 599–600, 981–991. https://doi.org/10.1016/j.scitotenv.2017.04.220
Dekanová V., Svitková I., Novikmec M. & Svitok M., 2021, Litter breakdown of invasive alien plant species in a pond environment: Rapid decomposition of Solidago canadensis may alter resource dynamics. Limnologica 90(August). https://doi.org/10.1016/j.limno.2021.125911
Fugère V., Lostchuck E. & Chapman L.J., 2020, Litter decomposition in afrotropical streams: Effects of land use, home-field advantage, and terrestrial herbivory. Freshwater Science, 39(3): 497–507. https://doi.org/10.1086/709807
Gong S., Guo R., Zhang T. & Guo J., 2015, Warming and nitrogen addition increase litter decomposition in a temperate meadow ecosystem. PLoS ONE 10(3): 1–14. https://doi.org/10.1371/journal.pone.0116013
He Y.H., Rutherford S., Javed Q., Wan J.S.H., Ren G.Q., Hu W.J., Xiang Y., Zhang Y., Sun J.F. & Du D.L., 2022, Mixed litter and incubation sites drive non-additive responses in seed germination and seedling growth of lettuce. Biochemical Systematics and Ecology 105(July), 104479. https://doi.org/10.1016/j.bse.2022.104479
Helsen K., Smith S.W., Brunet J., Cousins S.A.O., De Frenne P., Kimberley A., Kolb A., Lenoir J., Shiyu M.A., Michaelis J., Plue J., Verheyen K., Speed J.D.M. & Graae B.J., 2018, Impact of an invasive alien plant on litter decomposition along a latitudinal gradient. Ecosphere 9(1). https://doi.org/10.1002/ecs2.2097
Hu X., Arif M., Ding D., Li J., He X. & Li C., 2022a, Invasive Plants and Species Richness Impact Litter Decomposition in Riparian Zones. Frontiers in Plant Science 13(July): 1–14. https://doi.org/10.3389/fpls.2022.955656
Hu Z., Zhang J., Du Y., Shi K., Ren G., Iqbal B., Dai Z., Li J., Li G. & Du D., 2022b, Substrate availability regulates the suppressive effects of Canada goldenrod invasion on soil respiration. Journal of Plant Ecology, 15(3): 509–523. https://doi.org/10.1093/jpe/rtab073
Huhta A., Rautio P., Tuomi J. & Laine K., 2001, Restorative mowing on an abandoned semi‐natural meadow: short‐term and predicted long‐term effects. Journal of Vegetation Science 12(5): 677–686. https://doi.org/10.2307/3236908
Incerti G., Cartenì F., Cesarano G., Sarker T.C., Abd El-Gawad A.M., D’Ascoli R., Bonanomi G. & Giannino F., 2018, Faster N release, but not C loss, from leaf litter of invasives compared to native species in mediterranean ecosystems. Frontiers in Plant Science 9(April): 1–12. https://doi.org/10.3389/fpls.2018.00534
Kawałko D., Halarewicz A., Kaszubkiewicz J. & Jezierski P., 2017, Tempo dekompozycji opadu organicznego podczas przemian siedlisk łęgowych. Sylwan 161(07): 565–572.
LaForgia M.L., 2021, Impacts of invasive annual grasses and their litter vary by native functional strategy. Biological Invasions 23(8): 2621–2633. https://doi.org/10.1007/s10530-021-02527-2
Leicht-Young S.A., O’Donnell H., Latimer A.M. & Silander J.A., 2009, Effects of an invasive plant species, Celastrus orbiculatus, on soil composition and processes. American Midland Naturalist 161(2): 219–231. https://doi.org/10.1674/0003-0031-161.2.219
Li N., Nie M., Li B., Wu J. & Zhao J., 2021, Contrasting effects of the aboveground litter of native Phragmites australis and invasive Spartina alterniflora on nitrification and denitrification. Science of the Total Environment 764. https://doi.org/10.1016/j.scitotenv.2020.144283
Li W., Zhang C. & Peng C., 2012, Responses of soil microbial community structure and potential mineralization processes to Solidago canadensis invasion. Soil Science 177(7): 433–442. https://doi.org/10.1097/SS.0b013e318258f11e
Loydi A., Donath T.W., Otte A. & Eckstein R.L., 2015, Negative and positive interactions among plants: Effects of competitors and litter on seedling emergence and growth of forest and grassland species. Plant Biology 17(3): 667–675. https://doi.org/10.1111/plb.12287
Lukash O., Strilets S., Yakovenko O., Miroshnyk I., Dayneko N., Sliuta A., Kupchyk O., Morozova I. & Sazonova O., 2021, Prediction on the content of radionuclides and heavy metals of the Solidago canadensis L. use as a honey resource in Polesie. Ecological Questions 32(4): 35–47. http://dx.doi.org/10.12775/EQ.2021.032
Maan I., Kaur A., Sharma A., Singh H.P., Batish D.R., Kohli R.K. & Arora N.K., 2022, Variations in leaf litter decomposition explain invasion success of Broussonetia papyrifera over confamilial non-invasive Morus alba in urban habitats. Urban Forestry and Urban Greening, 67(April 2021), 127408. https://doi.org/10.1016/j.ufug.2021.127408
Madureira K.H. & Ferreira V., 2022, Colonization and decomposition of litter produced by invasive Acacia dealbata and native tree species by stream microbial decomposers. Limnetica 41(2): 201–218. https://doi.org/10.23818/limn.41.25
Meyer G., 2022, ‘Solidago gigantea (giant goldenrod)’, CABI Compendium. CABI International. https://doi.org/10.1079/cabicompendium.50575
Mori A.S., Cornelissen J.H.C., Fujii S., Okada K. & Isbell, F., 2020, A meta-analysis on decomposition quantifies afterlife effects of plant diversity as a global change driver. Nat. Commun. 11, 4547. https://doi.org/10.1038/s41467-020-18296-w
Pandey V.C., Rai A., Singh L. & Singh D.P., 2022, Understanding the Role of Litter Decomposition in Restoration of Fly Ash Ecosystem. Bulletin of Environmental Contamination and Toxicology 108(3): 389–395. https://doi.org/10.1007/s00128-020-02994-8
Pereira A., Figueiredo A. & Ferreira, V., 2021, Invasive Acacia Tree Species Affect Instream Litter Decomposition Through Changes in Water Nitrogen Concentration and Litter Characteristics. Microbial Ecology 82(1): 257–273. https://doi.org/10.1007/s00248-021-01749-0
Perera P.C.D., Gruss I., Twardowski J., Chmielowiec C., Szymura M. & Szymura T.H., 2022, The impact of restoration methods for Solidago-invaded land on soil invertebrates. Scientific Reports 12(1): 1-10. https://doi.org/10.1038/s41598-022-20812-5
Perera P.C.D., Chmielowiec C., Szymura T.H. & Szymura M. 2023, Effects of extracts from various parts of invasive Solidago species on the germination and growth of native grassland plant species. PeerJ 11, e1567. https://doi.org/10.7717/peerj.15676
Popay I. & Parker C., 2022, ‘Solidago canadensis (Canadian goldenrod)’, CABI Compendium. CABI International. https://doi.org/10.1079/cabicompendium.50599
Potthoff M., Steenwerth K.L., Jackson L.E., Drenovsky R.E., Scow K.M. & Joergensen R.G., 2006, Soil microbial community composition as affected by restoration practices in California grassland. Soil Biology and Biochemistry 38(7): 1851–1860. https://doi.org/10.1016/j.soilbio.2005.12.009
Rai P.K., 2022, Environmental Degradation by Invasive Alien Plants in the Anthropocene: Challenges and Prospects for Sustainable Restoration. Anthropocene Science 1(1): 5–28. https://doi.org/10.1007/s44177-021-00004-y
Rasran L., Vogt K. & Jensen K., 2007, Effects of litter removal and mowing on germination and establishment of two fen-grassland species along a productivity gradient. Folia Geobot 42: 271–288. https://doi.org/10.1007/BF02806467
Ruprecht E., Enyedi M.Z., Eckstein R.L. & Donath T.W., 2010, Restorative removal of plant litter and vegetation 40 years after abandonment enhances re-emergence of steppe grassland vegetation. Biological Conservation 143(2): 449–456. https://doi.org/10.1016/j.biocon.2009.11.012
Seastedt T.R., 1984, The role of microarthropods in decomposition and mineralization processes. Annual Review of Entomology 29: 25–46.
Sun F., Zeng L., Cai M., Chauvat M., Forey E., Tariq A., Graciano C., Zhang Z., Gu Y., Zeng F., Gong Y., Wang F. & Wang M., 2022a, An invasive and native plant differ in their effects on the soil food-web and plant-soil phosphorus cycle. Geoderma 410(October 2021), 115672. https://doi.org/10.1016/j.geoderma.2021.115672
Sun J., Rutherford S., Saif Ullah M., Ullah I., Javed Q., Rasool G., Ajmal M., Azeem A., Nazir M.J. & Du D., 2022b, Plant-soil feedback during biological invasions: Effect of litter decomposition from an invasive plant (Sphagneticola trilobata) on its native congener (S. calendulacea). Journal of Plant Ecology 15(3): 610–624. https://doi.org/10.1093/jpe/rtab095
Tokarska-Guzik B., Dajdok Z., Zając M., Zając A., Urbisz A., Danielewicz W. & Hołdyński C., 2014, Rośliny obcego pochodzeniaw Polsce ze szczególnym uwzględnieniem gatunków inwazyjnych [Allien plants in Poland with particular reference to invasive species]. Generalna Dyrekcja Ochrony Środowiska, Warszawa, 197 pp.
Ustinova E.N., Maslov M.N., Lysenkov S.N. & Tiunov A.V., 2022, Decomposition Rates and Community Structure of Arthropods in the Litter of Invasive Solidago gigantea Do Not Support the Home-Field Advantage Hypothesis. Russian Journal of Ecology 53(4): 328–334. https://doi.org/10.1134/S1067413622040063
Wang C., Wei M., Wang S., Wu B. & Du D., 2020a, Cadmium influences the litter decomposition of Solidago canadensis L. and soil N-fixing bacterial communities. Chemosphere 246(301). https://doi.org/10.1016/j.chemosphere.2019.125717
Wang J., Ge Y., Cornelissen J.H.C., Wang X.Y., Gao S., Bai Y., Chen T., Jing Z.W., Zhang C.B., Liu W.L., Li J.M. & Yu F.H., 2022, Litter nitrogen concentration changes mediate effects of drought and plant species richness on litter decomposition. Oecologia 198(2): 507–518. https://doi.org/10.1007/s00442-022-05105-y
Wang Y., Li F.Y., Song X., Wang X., Suri G. & Baoyin T., 2020b, Changes in litter decomposition rate of dominant plants in a semi-arid steppe across different land-use types: Soil moisture, not home-field advantage, plays a dominant role. Agriculture, Ecosystems & Environment 303, 107119. https://doi.org/10.1016/j.agee.2020.107119
Xie H., Knapp L.S.P., Yu M. & Wang G.G., 2022, Solidago canadensis invasion destabilizes the understory plant community and soil properties of coastal shelterbelt forests of subtropical China. Plant and Soil 484(1-2): 65–77. https://doi.org/10.1007/s11104-022-05739-0
Xu S., Li K., Li G., Hu Z., Zhang J., Iqbal B. & Du D., 2022, Canada Goldenrod Invasion Regulates the Effects of Soil Moisture on Soil Respiration. International Journal of Environmental Research and Public Health 19(23), 15446. https://doi.org/10.3390/ijerph192315446
Ye X.Q., Yan Y.N., Wu M. & Yu F.H., 2019, High capacity of nutrient accumulation by invasive Solidago canadensis in a coastal grassland. Frontiers in Plant Science, 10(May): 1–12. https://doi.org/10.3389/fpls.2019.00575
Yin R., Eisenhauer N., Auge H., Purahong W., Schmidt A. & Schädler M., 2019, Additive effects of experimental climate change and land use on faunal contribution to litter decomposition. Soil Biology and Biochemistry 131(September 2018): 141–148. https://doi.org/10.1016/j.soilbio.2019.01.009
Yu Y., Cheng H., Wang C. & Du D., 2022, Heavy drought reduces the decomposition rate of the mixed litters of two composite invasive alien plants. Journal of Plant Ecology. https://doi.org/10.1093/jpe/rtac047
Zhang L., Ma X., Wang H., Liu S., Siemann E. & Zou J., 2016, Soil Respiration and Litter Decomposition Increased Following Perennial Forb Invasion into an Annual Grassland. Pedosphere 26(4): 567–576. https://doi.org/10.1016/S1002-0160(15)60066-2
Zhong S., Xu Z., Yu Y., Cheng H., Wei M., Wang S., Du D. & Wang C., 2022, Acid deposition at higher acidity weakens the antagonistic responses during the co-decomposition of two Asteraceae invasive plants. Ecotoxicology and Environmental Safety, 243(August), 114012. https://doi.org/10.1016/j.ecoenv.2022.114012
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Chathura Perera, Iwona Gruss, Magdalena Szymura
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 312
Number of citations: 0