Risk of Land Degradation: A Case Study of Phu Yen Province, Vietnam
DOI:
https://doi.org/10.12775/EQ.2024.019Keywords
Modeling, GIS technology, analytic hierarchy process, land degradation, soil mapAbstract
The issue of the land degradation vulnerability index (LDVI) is multifaceted, encompassing climate, soil, vegetation, policy formulation, and human actions. In Vietnam, the convergence of climatic fluctuations and human impact results in phenomena, such as soil sealing, erosion, salinization, and landscape fragmentation. These phenomena are recognized as significant triggers of land degradation. This paper seeks to present a method for assessing a land's susceptibility to degradation by utilizing ten ecological 10 criteria: NDVI; slope; bulk density (cg/cm3); cation exchange capacity in the soil (CEC; mmol(c)/kg); Soil organic carbon stock (SOC; dg/kg), pH; Nitrogen (N; cg/kg); soil thickness (cm); soil surface temperature LST (0C); precipitation of the driest quarter (mm). The research results show that Song Hinh and Son Hoa communes are standing on the most land degradation vulnerability. Some criteria that are considered important in assessing land degradation by the analytic hierarchy process (AHP) technique are NDVI, followed by slope, nitrogen, bulk density, and soil thickness. The results of the study are consistent with records in localities that are often under pressure from drought. Extreme LDVI areas were larger identified on low mountains, slope terrain, and precipitation of driest quarter under 200mm, expanding on the agricultural areas with 40km2 total province agriculture area, followed by grassland (20.3 km2), natural forests (17.2 km2), plantation forests (8.2 km2), residences (8.2 km2), and bare land (8.15 km2). Poor land management practices, such as improper construction, inadequate water management, and lack of terracing, can contribute to soil erosion and land degradation. This LDVI assessment process can be applied to some tropical countries. The NDVI index combined with the slope, nitrogen, bulk density, and soil thickness can be exploratory indicators of land sensitivity to land degradation.
References
Albaladejo J., Díaz-Pereira E., de Vente J., 2021, Eco-holistic soil conservation to support land degradation neutrality and the sustainable development goals. Catena 196, 104823.
Aminu Z. & Jaiyeoba I.A., 2015, An assessment of soil degradation in Zaria area, Kaduna State, Nigeria. Geography 13.
Arabameri A., Rezaei K., Pourghasemi H.R., Lee S. & Yamani M., 2018, GIS-based gully erosion susceptibility mapping: a comparison among three data-driven models and AHP knowledge-based technique. Environmental Earth Sciences 77(17): 1–22. DOI:10.1007/s12665-018-7808-5.
Al-Shammary A.A.G., Kouzani A.Z., Kaynak A., Khoo S.Y., Norton M., Gates W., 2018, Soil bulk density estimation methods: A review. Pedosphere 28(4): 581–596. DOI:10.1016/S1002-0160(18)60034-7
Cai X., Zhang X. & Wang D., 2011, Land availability for biofuel production. Environmental Science and Technology 45(1): 334–339. DOI:10.1021/es103338e
Dlamini P., Chivenge P., Manson A. & Chaplot V., 2014, Land degradation impact on soil organic carbon and nitrogen stocks of sub-tropical humid grasslands in South Africa. Geoderma 235: 372–381. DOI:10.1016/j.geoderma.2014.07.016
Eswaran H., Lal R. & Reich P.F., 2019, Land degradation: an overview. Response to land degradation 2019, 20–35.
Ewunetu A., Simane B., Teferi E. & Zaitchik B.F., 2021, Mapping and quantifying comprehensive land degradation status using spatial multicriteria evaluation technique in the headwaters area of upper Blue Nile River. Sustainability 13(4), 2244.
Hanoshenko O., Vambol V., Vambol S., Yeremenko S., Fialka M.I., Bodnar I. & Inozemtseva O., 2022, Medical waste generation, handling and crime statistics' analysis in this activity field: a case study of the Poltava region (Ukraine). Ecological Questions 33(3): 79–88.
Hengl T., Mendes de Jesus J., Heuvelink G.B.M., Ruiperez Gonzalez M., Kilibarda M., Blagotić A., Shangguan W., Wright M.N., Geng X., Bauer-Marschallinger B., Guevara M.A.,Vargas R., MacMillan R.A., Batjes N.H., Leenaars J.G.B., Ribeiro E., Wheeler I. & Mantel S., 2017, SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 12(2), e0169748. DOI:10.1371/journal.pone.0169748
Hulai T., Kuzminska O., Omelchuk S., Hrynzovskyi A., Trunina T. & Blagaia A.V., 2022, Нygienic assessment of the influence of pesticides on the fatty composition of sunflower seed lipids. Wiadomosci lekarskie (Warsaw, Poland: 1960) 75(4): 848–852. DOI:10.36740/WLek202204118
Hussain K., Khan N.A., Vambol V., Vambol S., Yeremenko S. & Sydorenko V., 2022b, Advancement in Ozone base wastewater treatment technologies: Brief review. Ecological Questions 33(2): 7–19. DOI:10.12775/EQ.2022.010
Hussain T., Ahmed S.R., Lahori A.H., Mierzwa-Hersztek M., Vambol V., Khan A.A., Rafique L., Wasia S., Shahid M.F. & Zengqiang Z., 2022a, In-situ stabilization of potentially toxic elements in two industrial polluted soils ameliorated with rock phosphate-modified biochars. Environmental Pollution 309, 119733.
Karlova О., Grinzovskyy A., Kuzminska O. & Karvatsky I., 2017, Hyperhomocysteinemia as a predictor of cardiovascular diseases in lead-exposed subjects. Georgian Medical News 271: 86–90.
Khalil A.A., Essa Y.H. & Hassanein M.K., 2014, Monitoring agricultural land degradation in Egypt using MODIS NDVI satellite images. Nature and Science 12: 15–21.
Khan A.H., Rudayni H.A., Chaudhary A.A., Imran M. & Vambol S., 2022, Modern use of modified Sequencing Batch Reactor in wastewater Treatment. Ecological Questions 33(4): 1–23. DOI:10.12775/EQ.2022.033
Lal R., 2015, Restoring soil quality to mitigate soil degradation. Sustainability 7(5): 5875–5895.
Lorenz K., Lal R. & Ehlers K., 2019, Soil organic carbon stock as an indicator for monitoring land and soil degradation in relation to United Nations' Sustainable Development Goals. Land Degrad Dev 30: 824–838. DOI:10.1002/ldr.3270
Nascimento C.M., de Sousa Mendes W., Silvero N.E.Q., Poppiel R.R., Sayão V.M., Dotto A.C., Valadares dos Santos N., Amorim M.T.A. &Demattê J.A., 2021, Soil degradation index developed by multitemporal remote sensing images, climate variables, terrain and soil atributes. Journal of Environmental Management 277, 111316.
Saaty T.L., 2016, The analytic hierarchy and analytic network processes for the measurement of intangible criteria and for decision-making. Multiple criteria decision analysis: state of the art surveys 363–419. DOI:10.1007/978-1-4939-3094-4_10.
Saha S., Gayen A., Pourghasemi H.R. & Tiefenbacher J.P., 2019, Identification of soil erosion-susceptible areas using fuzzy logic and analytical hierarchy process modeling in an agricultural watershed of Burdwan district, India. Environmental Earth Sciences 78(23): DOI:10.1007/s12665-019-8658-5
Sandeep P., Reddy G.P.O., Jegankumar R. & Kumar K.C.A., 2021, Modeling and Assessment of Land Degradation Vulnerability in Semi-arid Ecosystem of Southern India Using Temporal Satellite Data, AHP and GIS. Environ Model Assess 26: 143–154. DOI:10.1007/s10666-020-09739-1.
Sinoga J.D.R., Pariente S., Diaz A.R. & Murillo J.F.M., 2012, Variability of relationships between soil organic carbon and some soil properties in Mediterranean rangelands under different climatic conditions (South of Spain). Catena 94: 17–25. DOI:10.1016/j.catena.2011.06.004
Symeonakis E., Calvo-Cases A. & Arnau-Rosalen E., 2007, Land use change and land degradation in southeastern Mediterranean Spain. Environmental Management 40(1): 80–94.
Tolche A.D., Adunga Gurara M., Pham Q.B. & Anh D.T., 2021, Modelling and Accessing Land Degradation Vulnerability using Remote Sensing Techniques and the Analytical Hierarchy Process Approach. Geocarto International 37(24): 7122–7142. DOI:10.1080/10106049.2021.1959656
Vambol S., Khan N.A., Khan A.H., Kiriyenko M., Borysova L., Taraduda D., Zakora A. & Bilotserkivska N., 2020, Developed jet-centrifugal spray devices: experimental testing to establish the possibility of their application in plants spraying technologies. Journal of Achievements in Materials and Manufacturing Engineering 102(1): 30–41
Vambol S., Vambol V. & Al-Khalidy K.A.H., 2019, Experimental study of the effectiveness of water-air suspension to prevent an explosion. Journal of Physics: Conference Series (Vol. 1294, No. 7, p. 072009). IOP Publishing.
Vambol V., Kowalczyk-Juśko A., Jóźwiakowski K., Mazur A., Vambol S. & Khan N.A., 2023, Investigation in Techniques for Using Sewage Sludge as an Energy Feedstock: Poland’s Experience. Ecological Questions 34(1): 91–98. https://doi.org/10.12775/EQ.2023.007
Zahorodniuk K., Voitsekhovsky V., Korobochka A., Hrynzovskyi A. & Averyanov V., 2019, Development of modernized paper filtering materials for water purification, assessment of their properties. Eastern-European Journal of Enterprise Technologies 1(10/97): 6–13. https://doi.org/10.15587/1729-4061.2019.156534
Ziarati P., Vambol V. & Vambol S., 2020, Use of inductively coupled plasma optical emission spectrometry detection in determination of arsenic bioaccumulation in Trifolium pratense L. from contaminated soil. Ecological Questions 31(1): 15–22.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Nguyen Thi Thu Nga, Pham Mai Phuong, Nguyen Quoc Khanh, Tong Thi Hanh, Pham Bao Quoc, Altaf Hussain Lahori, Sergiy Yeremenko, Vasyl Tyshchenko, Rustam Murasov
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 499
Number of citations: 0