Effect of changes in soil moisture on agriculture soils: response of microbial community, enzymatic and physiological diversity
DOI:
https://doi.org/10.12775/EQ.2023.043Keywords
agricultural soil, microbial abundance, biological activity, drought, physiological diversityAbstract
Global warming-induced drought stress and the duration of changes in soil moisture content may reshape or complicate these ecological relations. Biological activity could be affected severely by the impact of drought on agricultural ecosystems. In this study, 4 agricultural different soils were collected, and analyzed at each time gradient (0, 1, 2, 4, 8th week) to determine the physicochemical parameters, microbial abundance, enzyme activities (dehydrogenases (DH), phosphatases (acid ACP and alkaline ALP) and urease (UR)), and physiological diversity. We found that soil physicochemical properties fluctuated within the time gradient in all sites, but significantly decreased in total organic carbon, available phosphorus (P2O5 Olsena), nitrate (NO3-), ammonium (NH4+) (except for S site) and calcium carbonate (CaCO3) content (except for L site). Overall, ALP activity was higher compared to ACP activity. The DH activity was highest at sampling day (high moisture content) in G and N sites, and at 2nd week for L and S sites, but significantly decreased at the end of the experiment. The UR activity decreased significantly in G, L and N sites but increased in S site at the end of our experiment compared to the sampling day. Overall, the physiological diversity of the microbial community was strongly affected by water stress in the utilization of carbohydrates, carboxylic and acetic acids, amino acids, polymers, and amines, in all sites. Our findings highlighted that the short-term duration of drought stress had a significant influence on soil biological activity. This may improve the understanding of impact of soil moisture changes on soil nutrient cycling and biological activities in agricultural ecosystems.
References
Alster, C.J., German, D.P., Lu, Y., Allison, S.D., 2013. Microbial enzymatic responses to drought and to nitrogen addition in a southern California grassland. Soil Biology and Biochemistry 64, 68–79. https://doi.org/10.1016/j.soilbio.2013.03.034
Apostolakis, A., Schöning, I., Michalzik, B., Klaus, V. H., Boeddinghaus, R. S., Kandeler, E., et al. 2022. Drivers of soil respiration across a management intensity gradient in temperate grasslands under drought. Nutr Cycl Agroecosyst 124, 101–116. https://doi.org/10.1007/s10705-022-10224-2
Bednarek, R., Dziadowiec, H., Pokojska, U., Prusinkiewicz, Z., 2004: Eco-Pedological Studies. pp. 344. PWN, Warsaw.
Balasooriya, W.K., Denef, K., Huygens, D., Boeckx, P., 2014. Translocation and turnover of rhizodeposit carbon within soil microbial communities of an extensive grassland ecosystem. Plant Soil 376, 61–73. https://doi.org/10.1007/s11104-012-1343-z
Bogati, K., Walczak, M., 2022. The Impact of Drought Stress on Soil Microbial Community, Enzyme Activities and Plants. Agronomy 12, 189. https://doi.org/10.3390/agronomy12010189
Bogati, K.A., Golińska, P., Sewerniak, P., Burkowska-But, A., Walczak, M., 2023. Deciphering the Impact of Induced Drought in Agriculture Soils: Changes in Microbial Community Structure, Enzymatic and Metabolic Diversity. Agronomy 13, 1417. https://doi.org/10.3390/agronomy13051417
Bouskill, N.J., Wood, T.E., Baran, R., Ye, Z., Bowen, B.P., Lim, H., Zhou, J., Nostrand, J.D.V., Nico, P., Northen, T.R., Silver, W.L., Brodie, E.L., 2016. Belowground Response to Drought in a Tropical Forest Soil. I. Changes in Microbial Functional Potential and Metabolism. Front. Microbiol. 7. https://doi.org/10.3389/fmicb.2016.00525
Carbone, M.J., Alaniz, S., Mondino, P., Gelabert, M., Eichmeier, A., Tekielska, D., Bujanda, R., Gramaje, D., 2021. Drought Influences Fungal Community Dynamics in the Grapevine Rhizosphere and Root Microbiome. JoF 7, 686. https://doi.org/10.3390/jof7090686
Chakraborty, Amrita, Chakrabarti, K., Chakraborty, Ashis, Ghosh, S., 2011. Effect of long-term fertilizers and manure application on microbial biomass and microbial activity of a tropical agricultural soil. Biol Fertil Soils 47, 227–233. https://doi.org/10.1007/s00374-010-0509-1
Chodak, M., Gołębiewski, M., Morawska-Płoskonka, J., Kuduk, K., Niklińska, M., 2015. Soil chemical properties affect the reaction of forest soil bacteria to drought and rewetting stress. Ann Microbiol 65, 1627–1637. https://doi.org/10.1007/s13213-014-1002-0
Creamer, R. E., Stone, D., Berry, P., Kuiper, I., 2016. Measuring respiration profiles of soil microbial communities across Europe using MicroRespTM method. Applied Soil Ecology 97, 36–43. https://doi.org/10.1016/j.apsoil.2015.08.004
Deng, L., Peng, C., Kim, D.G., Li, J., Liu, Y., Hai, X., et al. 2021. Drought effects on soil carbon and nitrogen dynamics in global natural ecosystems. Earth-Science Reviews 214, 103501. https://doi.org/10.1016/j.earscirev.2020.103501
Fadiji, A.E., Yadav, A.N., Santoyo, G., Babalola, O.O., 2023. Understanding the plant-microbe interactions in environments exposed to abiotic stresses: An overview. Microbiological Research 271, 127368. https://doi.org/10.1016/j.micres.2023.127368
Fahey, C., Koyama, A., Antunes, P.M., Dunfield, K., Flory, S.L., 2020. Plant communities mediate the interactive effects of invasion and drought on soil microbial communities. ISME J 14, 1396–1409. https://doi.org/10.1038/s41396-020-0614-6
Furtak, K., Grządziel, J., Gałązka, A., Niedźwiecki, J., 2019. Analysis of Soil Properties, Bacterial Community Composition, and Metabolic Diversity in Fluvisols of a Floodplain Area. Sustainability 11, 3929. https://doi.org/10.3390/su11143929
Garland, J.L., Mills, A.L., 1991. Classification and Characterization of Heterotrophic Microbial Communities on the Basis of Patterns of Community-Level Sole-Carbon-Source Utilization. Appl Environ Microbiol 57, 2351–2359. https://doi.org/10.1128/aem.57.8.2351-2359.1991
Grządziel, J., Furtak, K., Gałązka, A., 2018. Community-Level Physiological Profiles of Microorganisms from Different Types of Soil That are Characteristic to Poland-a Long-Term Microplot Experiment. Sustainability 11, 56.
Hanaka, A., Ozimek, E., Reszczyńska, E., Jaroszuk-Ściseł, J., Stolarz, M., 2021. Plant Tolerance to Drought Stress in the Presence of Supporting Bacteria and Fungi: An Efficient Strategy in Horticulture. Horticulturae 7, 390. https://doi.org/10.3390/horticulturae7100390
Hao, Z., Singh, V.P., Xia, Y., 2018. Seasonal Drought Prediction: Advances, Challenges, and Future Prospects. Rev. Geophys. 56, 108–141. https://doi.org/10.1002/2016RG000549
Hartmann, M., Brunner, I., Hagedorn, F., Bardgett, R.D., Stierli, B., Herzog, C., Chen, X., Zingg, A., Graf-Pannatier, E., Rigling, A., Frey, B., 2017. A decade of irrigation transforms the soil microbiome of a semi-arid pine forest. Mol Ecol 26, 1190–1206. https://doi.org/10.1111/mec.13995
Hawkes, C.V., Kivlin, S.N., Rocca, J.D., Huguet, V., Thomsen, M.A., Suttle, K.B., 2011. Fungal community responses to precipitation: FUNGAL CLIMATE RESPONSE. Global Change Biology 17, 1637–1645. https://doi.org/10.1111/j.1365-2486.2010.02327.x
Hayden, H.L., Mele, P.M., Bougoure, D.S., Allan, C.Y., Norng, S., Piceno, Y.M., Brodie, E.L., DeSantis, T.Z., Andersen, G.L., Williams, A.L., Hovenden, M.J., 2012. Changes in the microbial community structure of bacteria, archaea and fungi in response to elevated CO 2 and warming in an Australian native grassland soil: Climate change effects on microbial communities. Environ Microbiol 14, 3081–3096. https://doi.org/10.1111/j.1462-2920.2012.02855.x
Huang, W., Liu, J., Zhou, G., Zhang, D., Deng, Q., 2011. Effects of precipitation on soil acid phosphatase activity in three successional forests in southern China. Biogeosciences 8, 1901–1910. https://doi.org/10.5194/bg-8-1901-2011
Hueso, S., García, C., Hernández, T., 2012. Severe drought conditions modify the microbial community structure, size and activity in amended and unamended soils. Soil Biology and Biochemistry 50, 167–173. https://doi.org/10.1016/j.soilbio.2012.03.026
IPCC. Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Delmotte, M.V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021; In Press.
Joergensen, R., Wichern, F., 2008. Quantitative assessment of the fungal contribution to microbial tissue in soil. Soil Biology and Biochemistry 40, 2977–2991. https://doi.org/10.1016/j.soilbio.2008.08.017
Kandeler, E., Gerber, H., 1988. Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol Fert Soils 6. https://doi.org/10.1007/BF00257924
Klinerová, T., Dostál, P., 2020. Nutrient‐demanding species face less negative competition and plant–soil feedback effects in a nutrient‐rich environment. New Phytol 225, 1343–1354. https://doi.org/10.1111/nph.16227
Lehmann, J., Bossio, D. A., Kögel-Knabner, I., and Rillig, M. C., 2020. The concept and future prospects of soil health. Nat Rev Earth Environ 1, 544–553. https://doi.org/10.1038/s43017-020-0080-8
Lennon, J.T., Jones, S.E., 2011. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat Rev Microbiol 9, 119–130. https://doi.org/10.1038/nrmicro2504
Malik, A.A., Bouskill, N.J., 2022. Drought impacts on microbial trait distribution and feedback to soil carbon cycling. Functional Ecology 36, 1442–1456. https://doi.org/10.1111/1365-2435.14010
Manzoni, S., Schimel, J.P., Porporato, A., 2012. Responses of soil microbial communities to water stress: results from a meta‐analysis. Ecology 93, 930–938. https://doi.org/10.1890/11-0026.1
Menge, D.N.L., Field, C.B., 2007. Simulated global changes alter phosphorus demand in annual grassland. Global Change Biol 13, 2582–2591. https://doi.org/10.1111/j.1365-2486.2007.01456.x
Misson, L., Rocheteau, A., Rambal, S., Ourcival, J.-M., Limousin, J.-M., Rodriguez, R., 2009. Functional changes in the control of carbon fluxes after 3 years of increased drought in a Mediterranean evergreen forest? Global Change Biology. https://doi.org/10.1111/j.1365-2486.2009.02121.x
Mohammadipanah, F., Wink, J., 2016. Actinobacteria from Arid and Desert Habitats: Diversity and Biological Activity. Front. Microbiol. 6. https://doi.org/10.3389/fmicb.2015.01541
Nakano, H., Takenishi, S., Watanabe, Y., 1984. Purification and Properties of Urease from Brevibacterium ammoniagenes. Agricultural and Biological Chemistry 48, 1495–1502. https://doi.org/10.1080/00021369.1984.10866339
Naylor, D., Coleman-Derr, D., 2018. Drought Stress and Root-Associated Bacterial Communities. Front. Plant Sci. 8, 2223. https://doi.org/10.3389/fpls.2017.02223
Nguyen, L.T.T., Osanai, Y., Anderson, I.C., Bange, M.P., Tissue, D.T., Singh, B.K., 2018. Flooding and prolonged drought have differential legacy impacts on soil nitrogen cycling, microbial communities and plant productivity. Plant Soil 431, 371–387. https://doi.org/10.1007/s11104-018-3774-7
Ochoa‐Hueso, R., Collins, S.L., Delgado‐Baquerizo, M., Hamonts, K., Pockman, W.T., Sinsabaugh, R.L., Smith, M.D., Knapp, A.K., Power, S.A., 2018. Drought consistently alters the composition of soil fungal and bacterial communities in grasslands from two continents. Glob Change Biol 24, 2818–2827. https://doi.org/10.1111/gcb.14113
Oliveira, T.B., Lucas, R.C., Scarcella, A.S. de A., Contato, A.G., Pasin, T.M., Martinez, C.A., Polizeli, M. de L.T. de M., 2020. Fungal communities differentially respond to warming and drought in tropical grassland soil. Mol Ecol 29, 1550–1559. https://doi.org/10.1111/mec.15423
Preece, C., Farré-Armengol, G., Peñuelas, J., 2020. Drought is a stronger driver of soil respiration and microbial communities than nitrogen or phosphorus addition in two Mediterranean tree species. Science of The Total Environment 735, 139554. https://doi.org/10.1016/j.scitotenv.2020.139554
Quintana, J.R., Martín-Sanz, J.P., Valverde-Asenjo, I., Molina, J.A., 2023. Drought differently destabilizes soil structure in a chronosequence of abandoned agricultural lands. CATENA 222, 106871. https://doi.org/10.1016/j.catena.2022.106871
Raiesi, F., Salek-Gilani, S., 2018. The potential activity of soil extracellular enzymes as an indicator for ecological restoration of rangeland soils after agricultural abandonment. Applied Soil Ecology 126, 140–147. https://doi.org/10.1016/j.apsoil.2018.02.022
Ros, M., Goberna, M., Moreno, J.L., Hernandez, T., García, C., Insam, H., Pascual, J.A., 2006. Molecular and physiological bacterial diversity of a semi-arid soil contaminated with different levels of formulated atrazine. Applied Soil Ecology 34, 93–102. https://doi.org/10.1016/j.apsoil.2006.03.010
Saleem, M., Hu, J., Jousset, A. 2019. More Than the Sum of Its Parts: Microbiome Biodiversity as a Driver of Plant Growth and Soil Health. Annu. Rev. Ecol. Evol. Syst. 50, 145–168. https://doi.org/10.1146/annurev-ecolsys-110617-062605
Santos-Medellín, C., Edwards, J., Liechty, Z., Nguyen, B., Sundaresan, V., 2017. Drought Stress Results in a Compartment-Specific Restructuring of the Rice Root-Associated Microbiomes. mBio 8, e00764-17. https://doi.org/10.1128/mBio.00764-17
Siebielec, S., Siebielec, G., Klimkowicz-Pawlas, A., Gałązka, A., Grządziel, J., Stuczyński, T., 2020. Impact of Water Stress on Microbial Community and Activity in Sandy and Loamy Soils. Agronomy 10, 1429. https://doi.org/10.3390/agronomy10091429
Suriyagoda, L.D.B., Ryan, M.H., Renton, M., Lambers, H., (2014). Plant Responses to Limited Moisture and Phosphorus Availability. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands 2014; Volume 124, pp. 143–200, ISBN 978-0-12-800138-7.
Tabatabai, M.A., 1982. Soil enzymes. In Methods of Soil Analysis; Part 2; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy and Soil Science Society of America: Madison, WI, USA.
Tahtamouni, M. E., Khresat, S., Lucero, M., Sigala, J., and Unc, A. (2023). Soil community catabolic profiles for a semiarid reclaimed surface coalmine. International Journal of Mining, Reclamation and Environment 37, 338–354. https://doi.org/10.1080/17480930.2023.2185438
Tan, X., He, J., Nie, Y., Ni, X., Ye, Q., Ma, L., Megharaj, M., He, W., Shen, W., 2023. Climate and edaphic factors drive soil enzyme activity dynamics and tolerance to Cd toxicity after rewetting of dry soil. Science of The Total Environment 855, 158926. https://doi.org/10.1016/j.scitotenv.2022.158926
Wang, M., Yang, J., Gao, H., Xu, W., Dong, M., Shen, G., Xu, J., Xu, X., Xue, J., Xu, C.-Y., Zhou, X., 2020. Interspecific plant competition increases soil labile organic carbon and nitrogen contents. Forest Ecology and Management 462, 117991. https://doi.org/10.1016/j.foreco.2020.117991
Warzyński, H., Sosnowska, A., Harasimiuk, A., 2018. Effect of variable content of organic matter and carbonates on results of determination of granulometric composition by means of Casagrande’s areometric method in modification by Prószyński. Soil Science Annual 69, 39–48. https://doi.org/10.2478/ssa-2018-0005
Wolińska, A., Stępniewska, Z., 2012. Dehydrogenase Activity in the Soil Environment, in: Canuto, R.A. (Ed.), Dehydrogenases. InTech. https://doi.org/10.5772/48294
Xiao, L., Min, X., Liu, G., Li, P., Xue, S., 2023. Effect of plant–plant interactions and drought stress on the response of soil nutrient contents, enzyme activities and microbial metabolic limitations. Applied Soil Ecology 181, 104666. https://doi.org/10.1016/j.apsoil.2022.104666
Xu, L., Naylor, D., Dong, Z., Simmons, T., Pierroz, G., Hixson, K.K., Kim, Y.-M., Zink, E.M., Engbrecht, K.M., Wang, Y., Gao, C., DeGraaf, S., Madera, M.A., Sievert, J.A., Hollingsworth, J., Birdseye, D., Scheller, H.V., Hutmacher, R., Dahlberg, J., Jansson, C., Taylor, J.W., Lemaux, P.G., Coleman-Derr, D., 2018. Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria. Proc. Natl. Acad. Sci. U.S.A. 115. https://doi.org/10.1073/pnas.1717308115
Yan, L., Zhu, J., Zhao, X., Shi, J., Jiang, C., Shao, D., 2019. Beneficial effects of endophytic fungi colonization on plants. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-019-09713-2
Zhang, Q., Shao, M., Jia, X., Wei, X., 2019. Changes in soil physical and chemical properties after short drought stress in semi-humid forests. Geoderma 338, 170–177. https://doi.org/10.1016/j.geoderma.2018.11.051
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Kalisa Bogati, Piotr Sewerniak, Maciej Walczak
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 751
Number of citations: 0