The intensity of biofilm formation by heterotrophic bacteria isolated from soil ferrosphere
DOI:
https://doi.org/10.12775/EQ.2023.016Keywords
Aggregation, biofilm, ammonifying bacteria, hydrophobicity, iron-reducing bacteria, ferrosphereAbstract
The intensity of biofilm formation by heterotrophic bacteria possessed ammonifying ability (Bacillus simplex ChNPU F1, Streptomyces canus NUChC F2, Streptomyces gardneri ChNPU F3), ammonifying and iron-reducing ability (Fictibacillus sp. ChNPU ZVB1) previously isolated from soil ferrosphere was studied. Methods used: indirect measurement of the biomass of the bacterial biofilm using the adsorption/desorption of crystal violet, the aggregation test (to determine aggregation properties), the salt aggregation test (to determine hydrophobicity). The correlation analysis between the intensity of biofilm formation and aggregation of strains showed a significant positive correlation. The studied strains of microorganisms did not show high adhesive properties, they were moderately-adhesive (B. simplex, S. canus and S. gardneri) and weakly-adhesive (Fictibacillus sp.). It is supposed that the role these bacteria in the microbial damage of materials is determined preferably by bioelectrochemical reactions (iron-reducing bacteria) and the production of corrosive and/or antimicrobial metabolites (ammonifying and iron-reducing bacteria), but not by the biofilms formation. The prospect of further research is to analyze the antagonistic properties and biofilm formation of heterotrophic bacteria under co-cultivation conditions, in particular, with sulfate-reducing bacteria.
References
Andreyuk E.I., Kozlova I.A., Kopteva Zh.P., Pilyashenko-Novokhatnyy A.I., Zanina V.V. & Purish L.M., 2002, Ferrosfera - zona formirovaniya korrozionno-aktivnogo soobshchestva mikroorganizmov [Ferrosphere - the zone of formation of a corrosion-active community of microorganisms]. Dopovidi NAN Ukrainy, 3: 157–161. (in Russian).
Andreyuk K.I., Kozlova I.P., Koptieva Zh.P., Piliashenko-Novokhatnyi A.I., Zanina V.V. & Purish L.M., 2005, Mikrobna koroziia pidzemnykh sporud [Microbial Corrosion of Underground Structures]. Naukova Dumka: 258, Kyiv. (in Ukrainian).
Chen L., Wei B. & Xu X., 2021, Effect of Sulfate-Reducing Bacteria (SRB) on the Corrosion of Buried Pipe Steel in Acidic Soil Solution. Coatings 11: 625. doi: 10.3390/coatings11060625
Costerton J.W., Lewandowski Z., Caldwell D.E., Korber D.R. & Lappin-Scott H.M., 1995, Microbial Biofilms, Annual Review of Microbiology 49: 711–745. doi: 10.1146/annurev.mi.49.100195.003431
Del Re B., Sgorbati B., Miglidi M. & Palenzona D., 2000, Adhesion, autoaggregation and hydrophobicity of 13 strains of Bifidobacterium longum. Letters in Applied Microbiology 31: 438–442. doi: 10.1046/j.1365-2672.2000.00845.x
De Windt W., Boon N., Siciliano S.D. & Verstraete W., 2003, Cell density related H2 consumption in relation to anoxic Fe(0) corrosion and precipitation of corrosion products by Shewanella ondensis MR-1, Environmental Microbiology 5(11): 1192–1202. doi: 10.1046/j.1462-2920.2003.00527.x
Dubiel M., Hsu C.H., Chien C.C., Mansfeld F. & Newman D.K., 2002, Microbial iron respiration can protect steel from corrosion, Applied and Environmental Microbiology 68(3): 1440–1445. doi: 10.1128/AEM.68.3.1440-1445.2002
Furuhata K., Kato Y., Goto K., Hara M. & Fukuyama M., 2009, Diversity of heterotrophic bacteria isolated from biofilm samples and cell surface hydrophobicity, The Journal of General and Applied Microbiology 55(1): 69–74. doi: 10.2323/jgam.55.69
Guo Zh., Ruan Q., Liu T., Mao X., Chai Z., Guo N. & Dong L., 2022, Microbiologically influenced corrosion of Cu by marine ammonifying Alcaligenes aquatilis bacterium. Bioelectrochemistry, 108052. doi: 10.1016/j.bioelechem.2022.108052
Hamilton W.A., 2003, Microbial influenced corrosion as model system for the study of metal microbe interaction: a unifying electron transfer hypothesis. Biofouling 19(1): 65–76. doi: 10.1080/0892701021000041078
Hammer Ø., Harper D.A.T. & Ryan P.D., 2001, PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica 4(1) 4: 9. http://palaeo-electronica.org/2001_1/past/issue1_01.htm
Haney E.F., Trimble M.J., Cheng J.T., Vallé Q. & Hancock R.E.W., 2018, Critical Assessment of Methods to Quantify Biofilm Growth and Evaluate Antibiofilm Activity of Host Defence Peptides. Biomolecules 8(2): 29. doi: 10.3390/biom8020029
Hernández-Santana M.A., 2021, The role of iron-reducing bacteria in the corrosion of carbon steel: a new microbiologically influenced corrosion mechanism, A Dissertation submitted to the graduate faculty. Norman, Oklahoma, 113 pp. https://shareok.org/handle/11244/332337
Herrera L.K. & Videla H.A., 2009, Role of iron-reducing bacteria in corrosion and protection of carbon steel. International Biodeterioration & Biodegradation 63(7): 891–895. doi: 10.1016/j.ibiod.2009.06.003
Jardak M., Abdelli F., Laadhar R., Lami R., Stien D., Aifa S. & Mnif S., 2017, Evaluation of biofilm-forming ability of bacterial strains isolated from the roof of an old house. Journal of General and Applied Microbiology 63(3): 186–194. doi: 10.2323/jgam.2016.10.005
Kragh K.N., Hutchison J.B., Melaugh G., Rodesney C., Roberts A.E., Irie Y., Jensen P.Ø., Diggle S.P., Allen R.J., Gordon V. & Bjarnsholt T., 2016, Role of Multicellular Aggregates in Biofilm Formation. Mbio 7(2): e00237–16. doi: 10.1128/mBio.00237-16
Li S.-M., Zhang Y.-Y., Du J., Liu J.-H. & Xu M., 2010, Influence of streptomyces on the Corrosion Behavior of Steel A3 in Thiobacillus ferrooxidans Media. Acta Chimica Sinica 68(01): 67–74.
Lin J. & Ballim R., 2012, Biocorrosion control: Current strategies and promising alternatives. African Journal of Biotechnology 11: 15736–15747. doi: 10.5897/AJB12.2479
Little B.J., Blackwood D.J., Hinks J., Lauro F.M., Marsili E., Okamoto A., Rice S.A., Wade S.A., Flemming H.-C., 2020, Microbially influenced corrosion — Any progress? Corrosion Science 170: 108641. doi: 10.1016/j.corsci.2020.108641
Maruthamuthu S., Dhandapani P., Ponmariappan S., Bae Jeong-Hyo, Palaniswamy N., Rahman Pattanathu K.S.M., 2009, Impact of ammonia producing Bacillus sp. on corrosion of cupronickel alloy 90:10. Metals and Materials International 15: 409–419. doi: 10.1007/s12540-009-0409-9
Nwanyanwu C.E. & Abu G.O., 2013, Influence of growth media on hydrophobicity of phenol-utilizing bacteria found in petroleum refinery effluent. International Research Journal of Biological Sciences 2(10): 6–11. www.isca.in
Ogawa A., Takakura K., Hirai N., Kanematsu H., Kuroda D., Kougo T., Sano K. & Terada S., 2020, Biofilm Formation Plays a Crucial Rule in the Initial Step of Carbon Steel Corrosion in Air and Water Environments. Materials 13(4): 923. doi: 10.3390/ma13040923
Pacheco da Rosa J., Korenblum E., Franco-Cirigliano M. N., Abreu F., Lins U., Soares R.M., Macrae A., Seldin L. & Coelho R.R., 2013, Streptomyces lunalinharesii strain 235 shows the potential to inhibit bacteria involved in biocorrosion processes BioMed Research
International, 309769. doi: 10.1155/2013/309769
Potekhina J.S., Sherisheva N.G., Povetkina L.P., Pospelov A.P., Rakitina T.A., Warnecke F. & Gottschalk G., 1999, Role of microorganisms in corrosion inhibition of metals in aquatic habitats. Applied Microbiology and Biotechnology 52(5): 639–646. doi: 10.1007/s002530051571
Purish L.M. & Asaulenko L.H., 2007, Dynamika suktsesiinykh zmin u sulfidohennii mikrobnii asotsiatsii za umov formuvannia bioplivky na poverkhni stali [Dynamics of successional changes in sulfidogenic microbial association under conditions of biofilm formation on steel surface]. Mikrobiolohichnyi Zhurnal 69(6): 19–25 (in Ukrainian).
Purish L.M., Asaulenko L.H. & Ostapchuk A.M., 2009, Osoblyvosti rozvytku mono- y asotsiatyvnykh kultur sulfatvidnovliuvalnykh bakterii ta utvorennia ekzopolimernoho kompleksu [Features of development of mono- and associative cultures of sulfate-reducing bacteria and formation of exopolymer complex]. Mikrobiolohichnyi Zhurnal 71(2): 20–26 (in Ukrainian).
Rosa J.P., Tibúrcio S.R., Marques J.M., Seldin L. & Coelho R.R., 2016, Streptomyces lunalinharesii 235 prevents the formation of a sulfate-reducing bacterial biofilm. Brazilian Journal of Microbiology 47(3): 603–609. doi: 10.1016/j.bjm.2016.04.013
Stepanović S., Vuković D., Dakić I., Savić B. & Švabić-Vlahović M., 2000, A modified microtiter-plate test for quantification of staphylococcal biofilm formation Journal of Microbiological Methods 40: 175–179. doi: 10.1016/s0167-7012(00)00122-6
Sungur E.I., Türetgen I., Javaherdashti R. & Çotuk A., 2010, Monitoring and disinfection of biofilm-associated sulfate reducing bacteria on different substrata in a simulated recirculating cooling tower system. Turkish Journal of Biology 34(4): 389–397. doi: 10.3906/biy-0902-8
Tkachuk N. & Zelena L., 2021a, Some corrosive bacteria isolated from the technogenic soil ecosystem in Chernihiv city (Ukraine). Studia Quaternaria 38(2): 101–108. doi: 10.24425/sq.2021.136826
Tkachuk N. & Zelena L., 2021b, The impact of bacteria of the genus Bacillus upon the biodamage/biodegradation of some metals and extensively used petroleum-based plastics. Corrosion and Materials Degradation 2: 531–553. doi: 10.3390/cmd2040028
Tkachuk N., Zelena L., Lukash O. & Mazur P., 2021, Microbiological and genetic characteristics of Bacillus velezensis bacillibactin-producing strains and their effect on the sulfate-reducing bacteria biofilms on the poly(ethylene terephthalate) surface. Ecological Questions 32(2): 119–129. doi: 10.12775/EQ.2021.019
Tripathi A.K., Thakur P., Saxena P., Rauniyar S., Gopalakrishnan V., Singh R.N., Gadhamshetty V., Gnimpieba E.Z., Jasthi B.K. & Sani R.K., 2021, Gene sets and mechanisms of sulfate-reducing bacteria biofilm formation and quorum sensing with impact on corrosion. Frontiers in microbiology 12: 754140. doi: 10.3389/fmicb.2021.754140
Valencia-Cantero E. & Pena-Cabriales J.J., 2014, Effects of iron-reducing bacteria on carbon steel corrosion induced by thermophilic sulfate-reducing consortia. Journal of Microbiology and Biotechnology 24(2): 280–286. doi: 10.4014/jmb.1310.10002
Videla H., Borgne S., Panter C. & Raman R., 2008, MIC of Steels by Iron Reducing Bacteria NACE Store. 10 pp. http://www.nace.org/cstm/Store/Product.aspx?id=58302510-ab52-dd11-889d-0017a446694e
Winn M., Casey E., Habimana O. & Murphy C.D., 2014, Characteristics of Streptomyces griseus biofilms in continuous flow tubular reactors. FEMS Microbiology Letters 352: 157–164. doi: 10.1111/1574-6968.12378
Zaidi M.A.F.M., Masri M.N. & Kew W.S., 2021, Microbiologically Influenced Corrosion of Iron by Nitrate Reducing Bacillus sp. Journal of Physics: Conference Series 2129: 012066. https://iopscience.iop.org/article/10.1088/1742-6596/2129/1/012066/pdf
Zita A. & Hermansson M., 1997, Determination of bacterial cell surface hydrophobicity of single cells in cultures and in wastewater in situ. FEMS Microbiology Letters 152(2): 299–306. doi: 10.1111/j.1574-6968.1997.tb10443.x
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Nataliia Tkachuk, Liubov Zelena
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 637
Number of citations: 0