Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Ecological Questions

Modern use of modified Sequencing Batch Reactor in wastewater Treatment
  • Home
  • /
  • Modern use of modified Sequencing Batch Reactor in wastewater Treatment
  1. Home /
  2. Archives /
  3. Vol. 33 No. 4 (2022) /
  4. Articles

Modern use of modified Sequencing Batch Reactor in wastewater Treatment

Authors

  • Afzal Hussain Khan Civil Engineering Department, College of Engineering, Jazan University, P.O. Box. 706, Jazan, 45142, Saudi Arabia
  • Hassan Ahmad Rudayni Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh-11623, Saudi Arabia
  • Anis Ahmad Chaudhary Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh-11623, Saudi Arabia
  • Mohd Imran Department of Chemical Engineering, College of Engineering, Jazan University, P.O. Box. 706, Jazan 45142, Saudi Arabia
  • Sergij Vambol Department of Life Safety, State Biotechnological University, Kharkiv, Ukraine

DOI:

https://doi.org/10.12775/EQ.2022.033

Keywords

sequencing batch reactor, pollution, treatment, nitrification, denitrification, biological wastewater treatment

Abstract

If wastes are not properly managed, it may seep into the earth and aquifers, polluting both the surface and the water table. For public health reasons, leachate is considered a major environmental hazard due of its poisonous and hardy components. Because of this, it must be collected and processed adequately before being released into nature. Currently, there is no single unit procedure for appropriate leachate treatment since traditional wastewater treatment techniques are unable to degrade harmful chemicals contained in the leachate to a suitable level. Consequently, there has been an increase in the study of various leachate treatment procedures in order to maximise operational versatility. Various strategies have been used to degrade the leachate based on its properties, discharge requirements, technological possibilities, regulatory restrictions, and cost concerns. Sequencing batch reactor (SBR) treatment systems for landfill leachate were lauded for their operating flexibility, shock load resilience, and high biomass retention in the interest of long-term sustainability for the environment. Therefore, the current work objective is a deeper study of the features of SBR to identify prospects and unresolved problems in this process. The content analysis method of scientific publications from rating journals indexed in Scopus, PubMed, ScienceDirect, ResearchGate, Google Scholar on the totality of the keywords of this study in various combinations was applied; selection and synthesis of the main characteristics SBR to identify gaps in this area and prospects for future research. An in-depth analysis of the benefits and drawbacks of different leachate degrading processes is provided in this article. The role of integrated leachate treatment technologies with SBR was also highlighted. The effects of various materials, techniques, tactics, and configurations on leachate treatment were also explored in the paper. Critiqued SBR system environmental and operational factors were addressed. Readers of this work are expected to get a better understanding of SBR studies for leachate treatment and to use this information as a guide for their own research in this field. It uses the fill and draw activated sludge system with clarifier and intermittent aeration mode, where all the metabolic reactions and the separation of solid-liquid takes place in a unit tank through a timed control sequence in a non-steady state, variable capacity and suspended growth biological wastewater treatment system. The simultaneous nitrification, denitrification, and phosphorus removal are made possible by combining anaerobic and aerobic processes.

References

Abdulgader M., Yu Q.J., Zinatizadeh A.A., Williams P. & Rahimi Z., 2020, Performance and kinetics analysis of an aerobic sequencing batch flexible fibre biofilm reactor for milk processing wastewater treatment. J. Environ. Manage. 255: 109793. https://doi.org/https://doi.org/10.1016/j.jenvman.2019.109793

Al-Mamun A., Jafary T., Baawain M.S., Rahman S., Choudhury M.R., Tabatabaei M. & Lam S.S., 2020, Energy recovery and carbon/nitrogen removal from sewage and contaminated groundwater in a coupled hydrolytic-acidogenic sequencing batch reactor and denitrifying biocathode microbial fuel cell. Environ. Res. 183: 109273. https://doi.org/https://doi.org/10.1016/j.envres.2020.109273

Baek G., Kim J. & Lee C., 2021, Effectiveness of electromagnetic in situ magnetite capture in anaerobic sequencing batch treatment of dairy effluent under electro-syntrophic conditions. Renew. Energy 179: 105–115. https://doi.org/https://doi.org/10.1016/j.renene.2021.07.052

Barros A.R.M., Rollemberg S.L. de S., de Carvalho C. de A., Moura I.H.H., Firmino P.I.M. & dos Santos A.B., 2020, Effect of calcium addition on the formation and maintenance of aerobic granular sludge (AGS) in simultaneous fill/draw mode sequencing batch reactors (SBRs). J. Environ. Manage. 255: 109850. https://doi.org/https://doi.org/10.1016/j.jenvman.2019.109850

Bhuvaneshwari S., Majeed F., Jose E. & Mohan A., 2022, Different treatment methodologies and reactors employed for dairy effluent treatment-A review. Journal of Water Process Engineering 46: 102622. https://doi.org/https://doi.org/10.1016/j.jwpe.2022.102622

Bucci P., Coppotelli B., Morelli I., Zaritzky N. & Caravelli A., 2021, Heterotrophic nitrification-aerobic denitrification performance in a granular sequencing batch reactor supported by next generation sequencing. Int. Biodeterior. Biodegradation 160: 105210. https://doi.org/https://doi.org/10.1016/j.ibiod.2021.105210

Chen D., Li H., Xue X., Zhang L., Hou Y., Chen H., Zhang Y., Song Y., Zhao S. & Guo J., 2022, Enhanced simultaneous partial nitrification and denitrification performance of aerobic granular sludge via tapered aeration in sequencing batch reactor for treating low strength and low COD/TN ratio municipal wastewater. Environ. Res. 209: 112743. https://doi.org/https://doi.org/10.1016/j.envres.2022.112743

Chudoba J., Grau P., Ottova V., 1973, Control of activated ! sludge filamentous bulking — II. Selection of microorganisms by means of a selector. Water Res 7(10): 1398–406.

Ciggin A.S., Iravanian A., Doğruel S. & Orhon D., 2021, Co-metabolism of olive mill wastewater in sequencing batch reactor under aerobic conditions after Fenton-based oxidation. J. Water Process Eng. 43: 102277. https://doi.org/https://doi.org/10.1016/j.jwpe.2021.102277

Ding J., Chen B., Zhang Y., Ye X., Li Y., Zhou D., Ding Y., Zhu W. & Zhang H., 2021, Effects of poly (1,4-butanediol succinate) carrier on the nitrogen removal performance and microbial community of sequencing batch reactors. J. Clean. Prod. 291: 125279. https://doi.org/https://doi.org/10.1016/j.jclepro.2020.125279

Guo Q., Yin Q., Du J., Zuo J. & Wu G., 2022, New insights into the r/K selection theory achieved in methanogenic systems through continuous-flow and sequencing batch operational modes. Sci. Total Environ. 807: 150732. https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.150732

Heidari M.R., Malakootian M., Boczkaj G., Sun X., Tao Y., Sonawane S.H. & Mehdizadeh H., 2021, Evaluation and start-up of an electro-Fenton-sequencing batch reactor for dairy wastewater treatment. Water Resour. Ind. 25: 100149. https://doi.org/https://doi.org/10.1016/j.wri.2021.100149

Hou Y., Zeng Q., Li H., Wu J., Xiang J., Huang H. & Shi S., 2022, Metagenomics-based interpretation of the impacts of silica nanoparticles exposure on phenol treatment performance in sequencing batch reactor system. Chem. Eng. J. 428: 132052. https://doi.org/https://doi.org/10.1016/j.cej.2021.132052

Hu K., Sarrà M. & Caminal G., 2021, Comparison between two reactors using Trametes versicolor for agricultural wastewater treatment under non-sterile condition in sequencing batch mode. J. Environ. Manage. 293: 112859. https://doi.org/https://doi.org/10.1016/j.jenvman.2021.112859

Jagaba A.H., Kutty S.R.M., Lawal I.M., Abubakar S., Hassan I., Zubairu I., Umaru I., Abdurrasheed A.S., Adam A.A., Ghaleb A.A.S., Almahbashi N.M.Y., Al-Dhawi B.N.S. & Noor A., 2021a, Sequencing batch reactor technology for landfill leachate treatment: A state-of-the-art review. J. Environ. Manage. 282: 111946. https://doi.org/10.1016/j.jenvman.2021.111946

Jagaba Ahmad Hussaini, Kutty S.R.M., Noor A., Birniwa A.H., Affam A.C., Lawal I.M., Kankia M.U. & Kilaco A.U., 2021b, A systematic literature review of biocarriers: Central elements for biofilm formation, organic and nutrients removal in sequencing batch biofilm reactor. J. Water Process Eng. 42: 102178. https://doi.org/https://doi.org/10.1016/j.jwpe.2021.102178

Ji J., Peng L., Redina M.M., Gao T., Khan A., Liu P. & Li X., 2021, Perfluorooctane sulfonate decreases the performance of a sequencing batch reactor system and changes the sludge microbial community. Chemosphere 279: 130596. https://doi.org/https://doi.org/10.1016/j.chemosphere.2021.130596

Jones, W. L., Schroeder, E. D. & Wilderer P. A., 1990, Denitrification in a batch wastewater treatment system using sequestered organic substances. Research Journal of the Water Pollution Control Federation 62(3): 259–267. https://www.jstor.org/stable/25043830

Karadag D., Köroğlu O.E., Ozkaya B. & Cakmakci M., 2015, A review on anaerobic biofilm reactors for the treatment of dairy industry wastewater. Process Biochem. 50: 262–271. https://doi.org/https://doi.org/10.1016/j.procbio.2014.11.005

Khalaf A.H., Ibrahim W.A., Fayed M. & Eloffy M.G., 2021, Comparison between the performance of activated sludge and sequence batch reactor systems for dairy wastewater treatment under different operating conditions. Alexandria Eng. J. 60: 1433–1445. https://doi.org/https://doi.org/10.1016/j.aej.2020.10.062

Khalil M. & Liu Y., 2021, Greywater biodegradability and biological treatment technologies: A critical review. Int. Biodeterior. Biodegradation 161: 105211. https://doi.org/https://doi.org/10.1016/j.ibiod.2021.105211

Lee D.-J., Chen Y.-Y., Show K.-Y., Whiteley C.G. & Tay J.-H., 2010, Advances in aerobic granule formation and granule stability in the course of storage and reactor operation. Biotechnol. Adv. 28: 919–934. https://doi.org/https://doi.org/10.1016/j.biotechadv.2010.08.007

Li D., Zhang S., Li S., Zeng H. & Zhang J., 2019, Aerobic granular sludge operation and nutrients removal mechanism in a novel configuration reactor combined sequencing batch reactor and continuous-flow reactor. Bioresour. Technol. 292: 122024. https://doi.org/https://doi.org/10.1016/j.biortech.2019.122024

Liu Y., Gayle A.A., Wilder-Smith A. & Rocklöv J., 2020, The reproductive number of COVID-19 is higher compared to SARS coronavirus. J. Travel Med. 1–4. https://doi.org/10.1093/jtm/taaa021

Maurya R., Zhu X., Valverde-Pérez B., Ravi Kiran B., General T., Sharma S., Kumar Sharma A., Thomsen M., Venkata Mohan S., Mohanty K. & Angelidaki I., 2022, Advances in microalgal research for valorization of industrial wastewater. Bioresour. Technol. 343: 126128. https://doi.org/https://doi.org/10.1016/j.biortech.2021.126128

Miao L., Wang S., Li B., Cao T., Xue T. & Peng Y., 2015a, Advanced nitrogen removal via nitrite using stored polymers in a modified sequencing batch reactor treating landfill leachate. Bioresour. Technol. 192: 354–360. https://doi.org/10.1016/j.biortech.2015.05.013

Miao L., Wang S., Li B., Cao T., Xue T. & Peng Y., 2015b, Advanced nitrogen removal via nitrite using stored polymers in a modified sequencing batch reactor treating landfill leachate. Bioresour. Technol. 192: 354–360. https://doi.org/https://doi.org/10.1016/j.biortech.2015.05.013

Nancharaiah Y.V & Kiran Kumar Reddy G., 2018, Aerobic granular sludge technology: Mechanisms of granulation and biotechnological applications. Bioresour. Technol. 247: 1128–1143. https://doi.org/https://doi.org/10.1016/j.biortech.2017.09.131

National G. & Pillars H., 2015, Sequencing Batch Reactor Technology. IWA Publ. 1: 3–93.

Ni M., Pan Y., Zhang X., Wen L., Yang W., Chen Y., Huang Y. & Song Z., 2021, Effects of P/C ratios on the growth, phosphorus removal and phosphorus recovery of a novel strain of highly efficient PAO. Process Biochem. 111: 109–117. https://doi.org/https://doi.org/10.1016/j.procbio.2021.08.010

Patel K., Patel N., Vaghamshi N., Shah K., Duggirala S.M. & Dudhagara P., 2021, Trends and strategies in the effluent treatment of pulp and paper industries: A review highlighting reactor options. Curr. Res. Microb. Sci. 2: 100077. https://doi.org/https://doi.org/10.1016/j.crmicr.2021.100077

Piotrowski R., Sawicki H. & Żuk K., 2021, Novel hierarchical nonlinear control algorithm to improve dissolved oxygen control in biological WWTP. J. Process Control 105: 78–87. https://doi.org/https://doi.org/10.1016/j.jprocont.2021.07.009

Pochwatka P., Kowalczyk-Juśko A., Sołowiej P., Wawrzyniak A. & Dach J., 2020, Biogas plant exploitation in a middle-sized dairy farm in Poland: Energetic and economic aspects. Energies 13(22): 6058.

Sakalova H., Malovanyy M., Vasylinycz T., Palamarchuk O., Semchuk J., 2019, Treatment of effluents from ions of heavy metals as display of environmentally responsible activity of modern businessman. Journal of Ecological Engineering: 20(4), 167–176. https://doi.org/10.12911/22998993/102841

Saleh M.M.A. & Mahmood U.F., 2005, Modified sequential batch reactor (MSBR) a new process of wastewater treatment. 9th Int. Water Technol. Conf., p. 105–113.

Singh V., Ormeci B., Mishra S. & Hussain A., 2022, Simultaneous partial Nitrification, ANAMMOX and denitrification (SNAD) – A review of critical operating parameters and reactor configurations. Chem. Eng. J. 433: 133677. https://doi.org/https://doi.org/10.1016/j.cej.2021.133677

Su J.J., Huang J.F., Wang Y.L. & Hong Y.Y., 2018, Treatment of duck house wastewater by a pilot-scale sequencing batch reactor system for sustainable duck production. Poult. Sci. 97: 3870–3877. https://doi.org/10.3382/ps/pey251

Vambol S., Vambol V., Suchikova Y. & Deyneko N., 2017, Analysis of the ways to provide ecological safety for the products of nanotechnologies throughout their life cycle, Eastern European Journal of Enterprise Technologies 1/10(85): 27–36. DOI: https://doi.org/10.15587/1729-4061.2017.85847.

Voytovych I., Malovanyy M., Zhuk V. & Mukha O., 2020, Facilities and problems of processing organic wastes by family-type biogas plants in Ukraine. Journal of Water and Land Development 45(IV–VI): 185–189. https://doi.org/ 10.24425/jwld.2020.133493

Wang J., Zhou J., Wang Y., Wen Y., He L. & He Q., 2020, Efficient nitrogen removal in a modified sequencing batch biofilm reactor treating hypersaline mustard tuber wastewater: The potential multiple pathways and key microorganisms. Water Res. 177: 115734. https://doi.org/https://doi.org/10.1016/j.watres.2020.115734

Wang L., Gu W., Liu Y., Liang P., Zhang X. & Huang X., 2022, Challenges, solutions and prospects of mainstream anammox-based process for municipal wastewater treatment. Sci. Total Environ. 820: 153351. https://doi.org/https://doi.org/10.1016/j.scitotenv.2022.153351

Wang M., Keeley R., Zalivina N., Halfhide T., Scott K., Zhang Q., van der Steen P. & Ergas S.J., 2018, Advances in algal-prokaryotic wastewater treatment: A review of nitrogen transformations, reactor configurations and molecular tools. J. Environ. Manage. 217: 845–857. https://doi.org/https://doi.org/10.1016/j.jenvman.2018.04.021

Zhang M., Wang X., Zhang D., Zhao G., Zhou B., Wang D., Wu Z., Yan C., Liang J. & Zhou L., 2022, Food waste hydrolysate as a carbon source to improve nitrogen removal performance of high ammonium and high salt wastewater in a sequencing batch reactor. Bioresour. Technol. 349: 126855. https://doi.org/https://doi.org/10.1016/j.biortech.2022.126855

Zhang Y., Meng C., He Y., Wang X. & Xue G., 2021, Influence of cell lysis by Fenton oxidation on cryptic growth in sequencing batch reactor (SBR): Implication of reducing sludge source discharge. Sci. Total Environ. 789: 148042. https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.148042

Zhao J., Yuan Q., Sun Y., Zhang J., Zhang D. & Bian R., 2021, Effect of fluoxetine on enhanced biological phosphorus removal using a sequencing batch reactor. Bioresour. Technol. 320: 124396. https://doi.org/https://doi.org/10.1016/j.biortech.2020.124396

Zheng Z., Li J. & Wang C., 2021, Rapid cultivation of the aerobic granules for simultaneous phenol degradation and ammonium oxidation in a sequencing batch reactor. Bioresour. Technol. 325: 124414. https://doi.org/https://doi.org/10.1016/j.biortech.2020.124414

Downloads

  • pdf

Published

2022-07-11

How to Cite

1.
KHAN, Afzal Hussain, RUDAYNI, Hassan Ahmad, CHAUDHARY, Anis Ahmad, IMRAN, Mohd and VAMBOL, Sergij. Modern use of modified Sequencing Batch Reactor in wastewater Treatment. Ecological Questions. Online. 11 July 2022. Vol. 33, no. 4, pp. 99-110. [Accessed 17 May 2025]. DOI 10.12775/EQ.2022.033.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 33 No. 4 (2022)

Section

Articles

License

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 1013
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

sequencing batch reactor, pollution, treatment, nitrification, denitrification, biological wastewater treatment
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop