The effect of temperature change on metabolism: separating biological and chemical reactions
DOI:
https://doi.org/10.12775/EQ.2022.040Keywords
temperature shift experiments, surface water, bacteria, Gulf of Gdańsk, oxygen consumption, life-detectionAbstract
Life-detection experiments carried out in extraterrestrial locations provided inconclusive results whether processes observed were biological or chemical. In this study, the typical effect of temperature on metabolic rates is described and a life-detection method that is easy to perform is proposed. The method comprises observing changes in microbial metabolic rates after temperature shift. The method was demonstrated by experiments on aquatic microorganisms in the Gulf of Gdansk (Baltic Sea). First experiment, in which temperature was shifted within the temperature range encountered at the sampling site, demonstrated a typical Q10 coefficient (2.84). The experiment in which temperature was shifted beyond the environmental temperature range provided an unexpectedly low Q10 coefficient (1.44), which indicated that excessive temperature exerted an inhibitory effect on metabolism. This response is not expected for chemical reactions, but it is typical for biological processes. In summary, a pair of properly-tailored experiments permitted separating biological and chemical reactions.
References
Barba J., Cueva A., Bahn M., Barron-Gafford G.A., Bond-Lamberty B., Hanson P.J., Jaimes A., Kulmala L., Pumpanen J., Scott R.L., Wohlfahrt G. & Vargas R., 2018, Comparing ecosystem and soil respiration: review and key challenges of tower-based and soil measurements. Agricultural and Forest Meteorology 249: 434–443. doi: 10.1016/j.agrformet.2017.10.028
Bianciardi G., Miller J.D., Straat P.A. & Levin G.V., 2012, Complexity analysis of the Viking Labeled Release experiments. International Journal of Aeronautical and Space Sciences 13: 14–26. doi: 10.5139/IJASS.2012.13.1.14
Caron D.A., 1983, Technique for enumeration of heterotrophic and phototrophic anoplankton, using epifluorescence microscopy, and comparison with other procedures. Applied and Environmental Microbiology 46: 491–498.
Cockell C.S., Bush T., Bryce C., Direito S., Fox-Powell M., Harrison J.P., Lammer H., Landenmark H., Martin-Torres J., Nicholson N., Noack L., O’Malley-James J., Payler S.J., Rushby A., Samuels T., Schwendner P., Wadsworth J. & Zorzano M. P., 2016, Habitability: a review. Astrobiology 16: 89–117. doi: 10.1089/ast.2015.1295
del Giorgio P.A. & Cole J.J., 1998, Bacterial growth efficiency in natural aquatic systems. Annual Review of Ecology and Systematics 29: 503–541.
del Giorgio P.A. & Williams P.J. le B., 2005, The global significance of respiration in aquatic ecosystems: from single cells to the biosphere, [in:] Respiration in aquatic ecosystems, P. A. del Giorgio & P. J. le B. Williams (eds), Oxford University Press, New York, p. 267–303.
Fenchel T., 2005, Respiration in aquatic protests, [in:] Respiration in aquatic ecosystems, P. A. del Giorgio & P. J. le B. Williams (eds), Oxford University Press, New York, p. 47–56.
Ferguson R.L., Buckley E. N. & Palumbo A. V., 1984, Response of marine bacterioplankton to differential filtration and confinement. Applied and Environmental Microbiology 47: 49–55.
Guaita C., 2017, Did Viking discover life on Mars? European Physical Journal Plus 132: 346. doi: 10.1140/epjp/i2017-11637-y
Hammer Ø., Harper D. A. T. & Ryan P. D., 2001, Past: paleontological statistics software package for education and data analysis. Paleontologica Electronica 4: 1–9.
Herbert R. A. & Bell C. R., 1977, Growth characteristics of an obligately psychrotrophic Vibrio sp. Archives of Microbiology 113: 215–220.
Hobbie J. E., Daley R. J. & Jasper S., 1977, Use of nucleopore filters for counting bacteria by fluorescence microscopy. Applied and Environmental Microbiology 33: 1225–1228.
Horowitz N. H., Hobby G. L. & Hubbard J. S., 1977, Viking on Mars: the carbon assimilation experiments. Journal of Geophysical Research 82: 4659–4662.
Kieffer H. H., 1976, Soil and surface temperatures at the Viking landing sites. Science 194: 1344–1346.
Klein H. P., 1977, The Viking biological investigation: general aspects. Journal of Geophysical Research 82: 4677–4680.
Levin G. V. & Straat P. A., 1977, Recent results from the Viking labeled release experiment on Mars. Journal of Geophysical Research 82: 4663–4662.
Levin G. V. & Straat P. A., 2016, The case for extant life on Mars and its possible detection by the Viking Labeled Release experiment. Astrobiology 16: 798–810. Doi: 10.1089/ast.2015.1464
Montagnes D. J. S., Kimmance S. A. & Atkinson D., 2003. Using Q10: can growth rates increase linearly with temperature? Aquatic Microbial Ecology 32: 307–313.
Oyama V. I. & Berdahl B. J., 1977, The Viking gas exchange experiment results from Chryse and Utopia surface samples. Journal of Geophysical Research 82: 4669–4676.
Rastogi M., Singh S. & Pathak H., 2002, Emission of carbon dioxide from soil. Current Science 82: 510–517.
Ripple W. J., Estes J. A., Schmitz O. J., Constant V., Kaylor M. J., Lenz A., Motley J. L., Self K. E., Taylor D. S. & Wolf C., 2016, What is a trophic cascade? Trends in Ecology & Evolution 31: 842–849. doi: 10.1016/j.tree.2016.08.010
Rychert K., Wielgat-Rychert M., Wołoszynek M. & Sojda G., 2015, Pelagic respiration in the coastal zone of the southern Baltic Sea. Ecohydrology & Hydrobiology 15: 215–219. doi: 10.1016/j.ecohyd.2015.06.001
Schuerger A. C. & Clark B. C., 2008, Viking biology experiments: lessons learned and the role of ecology in future Mars life-detection experiments. Space Science Reviews 135: 233–243. doi: 10.1007/s11214-007-9194-2
Schulze-Makuch D., Rummel J. D., Benner S. A., Levin G., Parro V. & Kounaves S., 2015, Nearly forty years after Viking: are we ready for a new life-detection mission? Astrobiology 15: 413–419. doi: 10.1089/ast.2015.1336
Sherr E. B. & Sherr B. F., 2002, Significance of predation by protists in aquatic microbial food webs. Antonie van Leeuwenhoek 81: 293–308.
Sieburth J. McN., 1967, Seasonal selection of estuarine bacteria by water temperature. Journal of Experimental of Marine Biology and Ecology 1: 98–121.
Utermöhl H., 1931, Neue Wege in der quantitativen Erfassung des Planktons. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 5: 567–596.
Witek Z., Ochocki S., Maciejowska M., Pastuszak M., Nakonieczny J., Podgórska B., Kownacka J. M., Mackiewicz T. & Wrzesińska-Kwiecień M., 1997, Phytoplankton primary production and its utilization by the pelagic community in the coastal zone of the Gulf of Gdańsk (southern Baltic). Marine Ecology Progress Series 148: 169–186.
York J. K., Witek Z., Labudda S. & Ochocki S., 2001, Comparison of primary production and pelagic community respiration rates in the coastal zone of the Gulf of Gdańsk. Oceanologia 43: 365–370.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Krzysztof Rychert
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 612
Number of citations: 0