Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Ecological Questions

The effect of temperature change on metabolism: separating biological and chemical reactions
  • Home
  • /
  • The effect of temperature change on metabolism: separating biological and chemical reactions
  1. Home /
  2. Archives /
  3. Vol. 33 No. 4 (2022) /
  4. Articles

The effect of temperature change on metabolism: separating biological and chemical reactions

Authors

  • Krzysztof Rychert Pomeranian University in Słupsk https://orcid.org/0000-0002-0173-3914

DOI:

https://doi.org/10.12775/EQ.2022.040

Keywords

temperature shift experiments, surface water, bacteria, Gulf of Gdańsk, oxygen consumption, life-detection

Abstract

Life-detection experiments carried out in extraterrestrial locations provided inconclusive results whether processes observed were biological or chemical. In this study, the typical effect of temperature on metabolic rates is described and a life-detection method that is easy to perform is proposed. The method comprises observing changes in microbial metabolic rates after temperature shift. The method was demonstrated by experiments on aquatic microorganisms in the Gulf of Gdansk (Baltic Sea). First experiment, in which temperature was shifted within the temperature range encountered at the sampling site, demonstrated a typical Q10 coefficient (2.84). The experiment in which temperature was shifted beyond the environmental temperature range provided an unexpectedly low Q10 coefficient (1.44), which indicated that excessive temperature exerted an inhibitory effect on metabolism. This response is not expected for chemical reactions, but it is typical for biological processes. In summary, a pair of properly-tailored experiments permitted separating biological and chemical reactions.

References

Barba J., Cueva A., Bahn M., Barron-Gafford G.A., Bond-Lamberty B., Hanson P.J., Jaimes A., Kulmala L., Pumpanen J., Scott R.L., Wohlfahrt G. & Vargas R., 2018, Comparing ecosystem and soil respiration: review and key challenges of tower-based and soil measurements. Agricultural and Forest Meteorology 249: 434–443. doi: 10.1016/j.agrformet.2017.10.028

Bianciardi G., Miller J.D., Straat P.A. & Levin G.V., 2012, Complexity analysis of the Viking Labeled Release experiments. International Journal of Aeronautical and Space Sciences 13: 14–26. doi: 10.5139/IJASS.2012.13.1.14

Caron D.A., 1983, Technique for enumeration of heterotrophic and phototrophic anoplankton, using epifluorescence microscopy, and comparison with other procedures. Applied and Environmental Microbiology 46: 491–498.

Cockell C.S., Bush T., Bryce C., Direito S., Fox-Powell M., Harrison J.P., Lammer H., Landenmark H., Martin-Torres J., Nicholson N., Noack L., O’Malley-James J., Payler S.J., Rushby A., Samuels T., Schwendner P., Wadsworth J. & Zorzano M. P., 2016, Habitability: a review. Astrobiology 16: 89–117. doi: 10.1089/ast.2015.1295

del Giorgio P.A. & Cole J.J., 1998, Bacterial growth efficiency in natural aquatic systems. Annual Review of Ecology and Systematics 29: 503–541.

del Giorgio P.A. & Williams P.J. le B., 2005, The global significance of respiration in aquatic ecosystems: from single cells to the biosphere, [in:] Respiration in aquatic ecosystems, P. A. del Giorgio & P. J. le B. Williams (eds), Oxford University Press, New York, p. 267–303.

Fenchel T., 2005, Respiration in aquatic protests, [in:] Respiration in aquatic ecosystems, P. A. del Giorgio & P. J. le B. Williams (eds), Oxford University Press, New York, p. 47–56.

Ferguson R.L., Buckley E. N. & Palumbo A. V., 1984, Response of marine bacterioplankton to differential filtration and confinement. Applied and Environmental Microbiology 47: 49–55.

Guaita C., 2017, Did Viking discover life on Mars? European Physical Journal Plus 132: 346. doi: 10.1140/epjp/i2017-11637-y

Hammer Ø., Harper D. A. T. & Ryan P. D., 2001, Past: paleontological statistics software package for education and data analysis. Paleontologica Electronica 4: 1–9.

Herbert R. A. & Bell C. R., 1977, Growth characteristics of an obligately psychrotrophic Vibrio sp. Archives of Microbiology 113: 215–220.

Hobbie J. E., Daley R. J. & Jasper S., 1977, Use of nucleopore filters for counting bacteria by fluorescence microscopy. Applied and Environmental Microbiology 33: 1225–1228.

Horowitz N. H., Hobby G. L. & Hubbard J. S., 1977, Viking on Mars: the carbon assimilation experiments. Journal of Geophysical Research 82: 4659–4662.

Kieffer H. H., 1976, Soil and surface temperatures at the Viking landing sites. Science 194: 1344–1346.

Klein H. P., 1977, The Viking biological investigation: general aspects. Journal of Geophysical Research 82: 4677–4680.

Levin G. V. & Straat P. A., 1977, Recent results from the Viking labeled release experiment on Mars. Journal of Geophysical Research 82: 4663–4662.

Levin G. V. & Straat P. A., 2016, The case for extant life on Mars and its possible detection by the Viking Labeled Release experiment. Astrobiology 16: 798–810. Doi: 10.1089/ast.2015.1464

Montagnes D. J. S., Kimmance S. A. & Atkinson D., 2003. Using Q10: can growth rates increase linearly with temperature? Aquatic Microbial Ecology 32: 307–313.

Oyama V. I. & Berdahl B. J., 1977, The Viking gas exchange experiment results from Chryse and Utopia surface samples. Journal of Geophysical Research 82: 4669–4676.

Rastogi M., Singh S. & Pathak H., 2002, Emission of carbon dioxide from soil. Current Science 82: 510–517.

Ripple W. J., Estes J. A., Schmitz O. J., Constant V., Kaylor M. J., Lenz A., Motley J. L., Self K. E., Taylor D. S. & Wolf C., 2016, What is a trophic cascade? Trends in Ecology & Evolution 31: 842–849. doi: 10.1016/j.tree.2016.08.010

Rychert K., Wielgat-Rychert M., Wołoszynek M. & Sojda G., 2015, Pelagic respiration in the coastal zone of the southern Baltic Sea. Ecohydrology & Hydrobiology 15: 215–219. doi: 10.1016/j.ecohyd.2015.06.001

Schuerger A. C. & Clark B. C., 2008, Viking biology experiments: lessons learned and the role of ecology in future Mars life-detection experiments. Space Science Reviews 135: 233–243. doi: 10.1007/s11214-007-9194-2

Schulze-Makuch D., Rummel J. D., Benner S. A., Levin G., Parro V. & Kounaves S., 2015, Nearly forty years after Viking: are we ready for a new life-detection mission? Astrobiology 15: 413–419. doi: 10.1089/ast.2015.1336

Sherr E. B. & Sherr B. F., 2002, Significance of predation by protists in aquatic microbial food webs. Antonie van Leeuwenhoek 81: 293–308.

Sieburth J. McN., 1967, Seasonal selection of estuarine bacteria by water temperature. Journal of Experimental of Marine Biology and Ecology 1: 98–121.

Utermöhl H., 1931, Neue Wege in der quantitativen Erfassung des Planktons. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 5: 567–596.

Witek Z., Ochocki S., Maciejowska M., Pastuszak M., Nakonieczny J., Podgórska B., Kownacka J. M., Mackiewicz T. & Wrzesińska-Kwiecień M., 1997, Phytoplankton primary production and its utilization by the pelagic community in the coastal zone of the Gulf of Gdańsk (southern Baltic). Marine Ecology Progress Series 148: 169–186.

York J. K., Witek Z., Labudda S. & Ochocki S., 2001, Comparison of primary production and pelagic community respiration rates in the coastal zone of the Gulf of Gdańsk. Oceanologia 43: 365–370.

Downloads

  • pdf

Published

2022-08-17

How to Cite

1.
RYCHERT, Krzysztof. The effect of temperature change on metabolism: separating biological and chemical reactions. Ecological Questions. Online. 17 August 2022. Vol. 33, no. 4, pp. 35-39. [Accessed 3 July 2025]. DOI 10.12775/EQ.2022.040.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 33 No. 4 (2022)

Section

Articles

License

Copyright (c) 2022 Krzysztof Rychert

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 731
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

temperature shift experiments, surface water, bacteria, Gulf of Gdańsk, oxygen consumption, life-detection
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop