Advancement in Ozone base wastewater treatment technologies: Brief review
DOI:
https://doi.org/10.12775/EQ.2022.010Keywords
ozone, treatment, hospital wastewater, AOP, technology, disinfectionAbstract
Over 70% of the planet's surface is covered by water. A universal solvent, water can dissolve a wide variety of compounds. The majority of water contamination is caused by human activity. Increasing water use and pollution are to blame for the current shortage of fresh water supplies. Population expansion, agricultural runoff, and municipal wastewater are the primary sources of pollution in the river. To conduct the study, the logical chain was developed. For the review, open sources of scientific information were used. The focus was on publications from the last 10 years and at the same time; earlier works were taken into accounts that have useful information for this study, which were identified in the list of references when studying recent sources. The number of sources published earlier than 10 years ago does not exceed 7% of the total number of references. The present study aims to determine the optimum conditions for best removal of contaminants as the review focuses on advancement in Ozonation/AOP technology, different type of methods used for drugs removal and different operating condition. Various modern treatment procedures make extensive use of drinking water treatment plants. Water shortages in countries can be alleviated by implementing some of the recommendations made in the research. More catchment areas need to be developed; strict management policies and guidelines should be implemented. Ozonation can also more effectively remove certain personal care products (PPCPs) from the skin. Recycled water can be disinfected using ozonation, which breaks down ozone in water. When ozone is used in this way, it is an effective parasiticide, germicide, and virucidal agent. It can also remove the chroma compounds, smells, infections, and many micro-pollutants simultaneously. Ozone-based AOP should be studied in the future to see whether it is cost-effective and to see if it consumes more energy than other traditional treatment methods.
References
Achak M., Chhiti Y., Ezzahrae F., Alaoui M., Barka N. & Boumya W., 2021, SARS-CoV-2 in hospital wastewater during outbreak of COVID-19: A review on detection, survival and disinfection technologies. Sci. Total Environ. 761: 143192. https://doi.org/10.1016/j.scitotenv.2020.143192
Amado C.M., Minahk C.J., Cilli E., Oliveira G. & Dupuy F.G., 2019, Jo ur l P re. BBA – Biomembranes, 183135. https://doi.org/10.1016/j.bbamem.2019.183135
Bashir M.J., Lim J.H., Abu Amr S.S., Wong L.P. & Sim Y.L., 2019, Post treatment of palm oil mill effluent using electro-coagulation-peroxidation (ECP) technique. J. Clean. Prod. 208: 716–727. https://doi.org/10.1016/j.jclepro.2018.10.073
Bural C.B., Demirer G.N., Kantoglu O. & Dilek F.B., 2010, Treatment of opium alkaloid containing wastewater in sequencing batch reactor (SBR)-Effect of gamma irradiation. Radiat. Phys. Chem. 79: 519–526. https://doi.org/10.1016/j.radphyschem.2009.09.013
Cao Y., Qiu W., Li J., Jiang J. & Pang S., 2021, Review on UV/sulfite process for water and wastewater treatments in the presence or absence of O2. Sci. Total Environ. 765: 142762. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.142762
Chelme-Ayala P., Afzal A., Pourrezaei P., Wang Y., Zapata M.A., Ding N., Jin J., Wang N., Drzewicz P. & El-Din M.G., 2009, Physico-chemical processes. Water Environ. Res. 81: 1056–1126. https://doi.org/10.2175/106143009X12445568399451
Chiavola A., Farabegoli G. & Antonetti F., 2014, Biological treatment of olive mill wastewater in a sequencing batch reactor. Biochem. Eng. J. 85: 71–78. https://doi.org/10.1016/j.bej.2014.02.004
Díaz V., Ibáñez R., Gómez P., Urtiaga A.M. & Ortiz I., 2011, Kinetics of electro-oxidation of ammonia-N, nitrites and COD from a recirculating aquaculture saline water system using BDD anodes. Water Res. 45: 125–134. https://doi.org/10.1016/j.watres.2010.08.020
Domingues E., Fernandes E., Gomes J. & Martins R.C., 2021, Advanced oxidation processes perspective regarding swine wastewater treatment. Sci. Total Environ. 776: 145958. https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.145958
Dordio A., Carvalho A.J.P., Teixeira D.M., Dias C.B. & Pinto A.P., 2010, Removal of pharmaceuticals in microcosm constructed wetlands using Typha spp. and LECA. Bioresour. Technol. 101: 886–892. https://doi.org/10.1016/j.biortech.2009.09.001
Elmolla E.S. & Chaudhuri M., 2012, The feasibility of using combined Fenton-SBR for antibiotic wastewater treatment. Desalination 285: 14–21. https://doi.org/10.1016/j.desal.2011.09.022
Ercan Ö., Deniz S., Yetimoğlu E.K. & Aydın A., 2015, Degradation of Reactive Dyes Using Advanced Oxidation Method. CLEAN - Soil, Air, Water 43: 1031–1036. https://doi.org/10.1002/clen.201400195
Gaurav G.K., Mehmood T., Kumar M., Cheng L., Sathishkumar K., Kumar A. & Yadav D., 2021, Review on polycyclic aromatic hydrocarbons (PAHs) migration from wastewater. J. Contam. Hydrol. 236: 103715. https://doi.org/https://doi.org/10.1016/j.jconhyd.2020.103715
Giannakis S., Lin K.-Y.A. & Ghanbari F., 2021, A review of the recent advances on the treatment of industrial wastewaters by Sulfate Radical-based Advanced Oxidation Processes (SR-AOPs). Chem. Eng. J. 406: 127083. https://doi.org/https://doi.org/10.1016/j.cej.2020.127083
Giwa A., Yusuf A., Balogun H.A., Sambudi N.S., Bilad M.R., Adeyemi I., Chakraborty S. & Curcio S., 2021, Recent advances in advanced oxidation processes for removal of contaminants from water: A comprehensive review. Process Saf. Environ. Prot. 146: 220–256. https://doi.org/https://doi.org/10.1016/j.psep.2020.08.015
Grenoble Z., Zhang C.C., Ahmed S., Jeffcoat S.B., Selbes M., Kaplan S.S., Begum S. & Ahmad R., 2007, Physico-Chemical Processes 79: 1228–1296. https://doi.org/10.2175/106143007X218395
Guvenc S.Y., Dincer K. & Varank G., 2019, Performance of electrocoagulation and electro-Fenton processes for treatment of nanofiltration concentrate of biologically stabilized landfill leachate. J. Water Process Eng. 31: 100863. https://doi.org/10.1016/j.jwpe.2019.100863
Han Y., Sun Y., Chen H., Guo X., Yu C., Li Y.B., Liu J. & Xiao B., 2017, Effects of wastewater treatment processes on the sludge reduction system with 2,4-dichlorophenol: Sequencing batch reactor and anaerobic-anoxic-oxic process. J. Biotechnol. 251: 99–105. https://doi.org/10.1016/j.jbiotec.2017.04.027
Hansen É., Monteiro de Aquim P. & Gutterres M., 2021, Current technologies for post-tanning wastewater treatment: A review. J. Environ. Manage. 294: 113003. https://doi.org/https://doi.org/10.1016/j.jenvman.2021.113003
Haq D.Z., Rini Novitasari D.C., Hamid A., Ulinnuha N., Farida Y., Nugraheni R.R.D., Nariswari R., Rohayani H., Pramulya R. & Widjayanto A., 2021, Long Short-Term Memory Algorithm for Rainfall Prediction Based on El-Nino and IOD Data. Procedia Comput. Sci. 179: 829–837. https://doi.org/10.1016/j.procs.2021.01.071
Hassan M., Ashraf G.A., Zhang B., He Y., Shen G. & Hu S., 2020, Energy-efficient degradation of antibiotics in microbial electro-Fenton system catalysed by M-type strontium hexaferrite nanoparticles. Chem. Eng. J. 380: 122483. https://doi.org/10.1016/j.cej.2019.122483
Holliger C., Gaspard S., Glod G., Heijman C., Schumacher W., Schwarzenbach R.P. & Vazquez F., 1997, Contaminated environments in the subsurface and bioremediation: Organic contaminants. FEMS Microbiol. Rev. 20: 517–523. https://doi.org/10.1016/S0168-6445(97)00030-2
Iqbal J., Hira P.R., Al-Ali F. & Philip R., 2001, Cryptosporidiosis in Kuwaiti children: seasonality and endemicity. Clinical microbiology and infection 7(5): 261–266. https://doi.org/10.1046/j.1198-743x.2001.00254.x.
Joseph C.G., Farm Y.Y., Taufiq-Yap Y.H., Pang C.K., Nga J.L.H. & Puma G.L., 2021, Ozonation treatment processes for the remediation of detergent wastewater: A comprehensive review. J. Environ. Chem. Eng. 106099. https://doi.org/https://doi.org/10.1016/j.jece.2021.106099
Karimi-Maleh H., Fakude C.T., Mabuba N., Peleyeju G.M. & Arotiba O.A., 2019, The determination of 2-phenylphenol in the presence of 4-chlorophenol using nano-Fe3O4/ionic liquid paste electrode as an electrochemical sensor. J. Colloid Interface Sci. 554: 603–610. https://doi.org/10.1016/j.jcis.2019.07.047
Keyan L., Jianan Z. & Dayong D., 2021, Improving stock price prediction using the long short-term memory model combined with online social networks. J. Behav. Exp. Financ. 30: 100507. https://doi.org/10.1016/j.jbef.2021.100507
Khan A.H., Khan N.A., Ahmed S., Dhingra A., Singh C.P., Khan S.U., Mohammadi A.A., Changani F., Yousefi M., Alam S., Vambol S., Vambol V.,
Khursheed A. & Ali I., 2020, Application of advanced oxidation processes followed by different treatment technologies for hospital wastewater treatment. J. Clean. Prod. 269: 122411. https://doi.org/10.1016/j.jclepro.2020.122411
Khan N.A., Ahmed S., Vambol V. & Vambol S., 2021, Pharmaceutical Wastewater Treatment Technologies: Concepts and Implementation Strategies, 1st ed. IWA Publishing, UK.
Kimura K., Hara H. & Watanabe Y., 2005, Removal of pharmaceutical compounds by submerged membrane bioreactors (MBRs). Desalination 178: 135–140. https://doi.org/10.1016/j.desal.2004.11.033
Köhler C., Venditti S., Igos E., Klepiszewski K., Benetto E. & Cornelissen A., 2012, Elimination of pharmaceutical residues in biologically pre-treated hospital wastewater using advanced UV irradiation technology: A comparative assessment. J. Hazard. Mater. 239–240: 70–77. https://doi.org/10.1016/j.jhazmat.2012.06.006
Kozak M., Cırık K., Dolaz M. & Başak S., 2021, Evaluation of textile wastewater treatment in sequential anaerobic moving bed bioreactor - aerobic membrane bioreactor. Process Biochem. 105: 62–71. https://doi.org/10.1016/j.procbio.2021.03.013
Kulkarni S.J., Tapre R.W., Patil S.V. & Sawarkar M.B., 2013, Adsorption of phenol from wastewater in fluidized bed using coconut shell activated carbon. Procedia Eng. 51: 300–307. https://doi.org/10.1016/j.proeng.2013.01.040
Kurian M., 2021, Advanced oxidation processes and nanomaterials -a review. Clean. Eng. Technol. 2: 100090. https://doi.org/https://doi.org/10.1016/j.clet.2021.100090
Lancheros J.C., Madera-Parra C.A., Caselles-Osorio A., Torres-López W.A. & Vargas-Ramírez X.M., 2019, Ibuprofen and Naproxen removal from domestic wastewater using a Horizontal Subsurface Flow Constructed Wetland coupled to Ozonation. Ecol. Eng. 135: 89–97. https://doi.org/10.1016/j.ecoleng.2019.05.007
Ledjeri A., Yahiaoui I. & Aissani-Benissad F., 2016, The electro/Fe3+/peroxydisulfate (PDS) process coupled to activated sludge culture for the degradation of tetracycline. J. Environ. Manage. 184: 249–254. https://doi.org/10.1016/j.jenvman.2016.09.086
Lee Y., Kovalova L., McArdell C.S. & von Gunten, U., 2014, Prediction of micropollutant elimination during ozonation of a hospital wastewater effluent. Water Res. 64: 134–148. https://doi.org/10.1016/j.watres.2014.06.027
Legrini O., Oliveros E. & Braun A.M., 1993, Photochemical Processes for Water Treatment. Chem. Rev. 93: 671–698. https://doi.org/10.1021/cr00018a003
Li S., Hua T., Yuan C.S., Li B., Zhu X. & Li F., 2020, Degradation pathways, microbial community and electricity properties analysis of antibiotic sulfamethoxazole by bio-electro-Fenton system. Bioresour. Technol. 298: 122501. https://doi.org/10.1016/j.biortech.2019.122501
Li Y.-L., Chuang T.-W., Chang P., Su C.-T., Chien L.-N., Lin L.-Y. & Chiou H.-Y., 2021, Long-term Exposure to Ozone and Sulfur Dioxide Increases the Incidence of Type 2 Diabetes Mellitus among Aged 30 to 50 adult population. Environ. Res. 194: 110624. https://doi.org/10.1016/j.envres.2020.110624
Li Y., Dong H., Li L., Tang L., Tian R., Li R., Chen J., Xie Q., Jin Z., Xiao J., Xiao S. & Zeng G., 2021, Recent advances in waste water treatment through transition metal sulfides-based advanced oxidation processes. Water Res. 192: 116850. https://doi.org/https://doi.org/10.1016/j.watres.2021.116850
Liu L., Chen Z., Zhang J., Shan D., Wu Y., Bai L. & Wang B., 2021, Treatment of industrial dye wastewater and pharmaceutical residue wastewater by advanced oxidation processes and its combination with nanocatalysts: A review. J. Water Process Eng. 42: 102122. https://doi.org/https://doi.org/10.1016/j.jwpe.2021.102122
Liu Z., Demeestere K. & Van Hulle S., 2021, Comparison and performance assessment of ozone-based AOPs in view of trace organic contaminants abatement in water and wastewater: A review. J. Environ. Chem. Eng. 9: 105599. https://doi.org/https://doi.org/10.1016/j.jece.2021.105599
Lu S., Liu L., Demissie H., An G. & Wang D., 2021, Design and application of metal-organic frameworks and derivatives as heterogeneous Fenton-like catalysts for organic wastewater treatment: A review. Environ. Int. 146: 106273. https://doi.org/https://doi.org/10.1016/j.envint.2020.106273
Luo H., Zeng Y., He D. & Pan X., 2021, Application of iron-based materials in heterogeneous advanced oxidation processes for wastewater treatment: A review. Chem. Eng. J. 407: 127191. https://doi.org/https://doi.org/10.1016/j.cej.2020.127191
Mackuľak T., Mosný M., Grabic R., Golovko O., Koba O. & Birošová L., 2015, Fenton-like reaction: A possible way to efficiently remove illicit drugs and pharmaceuticals from wastewater. Environ. Toxicol. Pharmacol. 39: 483–488. https://doi.org/10.1016/j.etap.2014.12.016
Metropolitan Council Environmental Services, 2007, Recycling Treated Municipal Wastewater for Industrial Water Use. LCMR 05-07d MCES Project No. 070186 Prepared for Legislative Commission on Minnesota Resources. https://www.leg.mn.gov/docs/2007/other/070575.pdf
Monteil H., Péchaud Y., Oturan N. & Oturan M.A., 2019, A review on efficiency and cost effectiveness of electro- and bio-electro-Fenton processes: Application to the treatment of pharmaceutical pollutants in water. Chem. Eng. J. 376: 119577. https://doi.org/10.1016/j.cej.2018.07.179
Mostafa M.K., Gamal G. & Wafiq A., 2021, The impact of COVID 19 on air pollution levels and other environmental indicators - A case study of Egypt. J. Environ. Manage. 277: 111496. https://doi.org/10.1016/j.jenvman.2020.111496
Mouele E.S.M., Tijani J.O., Badmus K.O., Pereao O., Babajide O., Fatoba O.O., Zhang C., Shao T., Sosnin E., Tarasenko V., Laatikainen K. & Petrik L.F., 2021, A critical review on ozone and co-species, generation and reaction mechanisms in plasma induced by dielectric barrier discharge technologies for wastewater remediation. J. Environ. Chem. Eng. 9: 105758. https://doi.org/https://doi.org/10.1016/j.jece.2021.105758
Mozaffari N., Mozaffari N., Elahi S.M., Vambol S., Vambol V., Khan N.A. & Khan N., 2020, Kinetics study of CO molecules adsorption on Al2O3/Zeolite composite films prepared by roll-coating method. Surf. Eng. 37(3): 1–10. https://doi.org/10.1080/02670844.2020.1768628
Paíga P., Santos L.H.M.L.M., Ramos S., Jorge S., Silva J.G. & Delerue-Matos C., 2016, Presence of pharmaceuticals in the Lis river (Portugal): Sources, fate and seasonal variation. Sci. Total Environ. 573: 164–177. https://doi.org/10.1016/j.scitotenv.2016.08.089
Park J., Yamashita N. & Tanaka H., 2018, Membrane fouling control and enhanced removal of pharmaceuticals and personal care products by coagulation-MBR. Chemosphere 197: 467–476. https://doi.org/10.1016/j.chemosphere.2018.01.063
Paumo H.K., Dalhatou S., Katata-Seru L.M., Kamdem B.P., Tijani J.O., Vishwanathan V., Kane A. & Bahadur I., 2021, TiO2 assisted photocatalysts for degradation of emerging organic pollutants in water and wastewater. J. Mol. Liq. 331: 115458. https://doi.org/https://doi.org/10.1016/j.molliq.2021.115458
Qian X., Wang Y. & Zheng H., 2016, Migration and distribution of water and organic matter for activated sludge during coupling magnetic conditioning-horizontal electro-dewatering (CM-HED). Water Res. 88: 93–103. https://doi.org/10.1016/j.watres.2015.10.001
Rekhate C.V. & Srivastava J.K., 2020, Recent advances in ozone-based advanced oxidation processes for treatment of wastewater- A review. Chem. Eng. J. Adv. 3: 100031. https://doi.org/10.1016/j.ceja.2020.100031
Rivas F.J., Beltrán F.J. & Encinas A., 2012, Removal of emergent contaminants: Integration of ozone and photocatalysis. J. Environ. Manage. 100: 10–15. https://doi.org/10.1016/j.jenvman.2012.01.025
Rosset M., Sfreddo L.W., Hidalgo G.E.N., Perez-Lopez O.W. & Féris L.A., 2019, Adsorbents derived from hydrotalcites for the removal of diclofenac in wastewater. Appl. Clay Sci. 175: 150–158. https://doi.org/10.1016/j.clay.2019.04.014
RS2, 2012, Potable water specification, 2nd ed. Rwanda Bureau of Standard, Kigali.
Sardana A., Cottrell B., Soulsby D. & Aziz T.N., 2019, Dissolved organic matter processing and photoreactivity in a wastewater treatment constructed wetland. Sci. Total Environ. 648: 923–934. https://doi.org/10.1016/j.scitotenv.2018.08.138
Shirani Z., Song H. & Bhatnagar A., 2020, Efficient removal of diclofenac and cephalexin from aqueous solution using Anthriscus sylvestris-derived activated biochar. Sci. Total Environ. 745: 140789. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.140789
Sipma J., Osuna B., Collado N., Monclús H., Ferrero G., Comas J. & Rodriguez-Roda I., 2010, Comparison of removal of pharmaceuticals in MBR and activated sludge systems. Desalination 250: 653–659. https://doi.org/10.1016/j.desal.2009.06.073
Soomro G.S., Qu C., Ren N., Meng S., Li X., Liang D., Zhang S. & Li Y., 2020, Efficient removal of refractory organics in landfill leachate concentrates by electrocoagulation in tandem with simultaneous electro-oxidation and in-situ peroxone. Environ. Res. 183: 109249. https://doi.org/10.1016/j.envres.2020.109249
Souza F.S. & Féris L.A., 2016, Hospital and Municipal Wastewater: Identification of Relevant Pharmaceutical Compounds. Water Environ. Res. 88: 871–877. https://doi.org/10.2175/106143016x14609975747603
Tambosi J.L., de Sena R.F., Favier M., Gebhardt W., José H.J., Schröder H.F. & de Fatima Peralta Muniz Moreira R., 2010, Removal of pharmaceutical compounds in membrane bioreactors (MBR) applying submerged membranes. Desalination 261(1-2): 148–156. https://doi.org/10.1016/j.desal.2010.05.014
Tete V.S., Nyoni H., Mamba B.B. & Msagati T.A.M., 2020, Occurrence and spatial distribution of statins, fibrates and their metabolites in aquatic environments. Arab. J. Chem. 13: 4358–4373. https://doi.org/10.1016/j.arabjc.2019.08.003
Tripathi S. & Hussain T., 2022, Water and Wastewater Treatment through Ozone-based technologies, Development in Wastewater Treatment Research and Processes. Elsevier Inc. https://doi.org/10.1016/b978-0-323-85583-9.00015-6
Verlicchi P., Al Aukidy M., Galletti A., Petrovic M. & Barceló D., 2012, Hospital effluent: Investigation of the concentrations and distribution of pharmaceuticals and environmental risk assessment. Sci. Total Environ. 430: 109–118. https://doi.org/10.1016/j.scitotenv.2012.04.055
Vieira W.T., de Farias M.B., Spaolonzi M.P., da Silva M.G.C. & Vieira M.G.A., 2021, Latest advanced oxidative processes applied for the removal of endocrine disruptors from aqueous media – A critical report. J. Environ. Chem. Eng. 9: 105748. https://doi.org/https://doi.org/10.1016/j.jece.2021.105748
Wang B., Shi W., Zhang H., Ren H. & Xiong M., 2021, Promoting the ozone-liquid mass transfer through external physical fields and their applications in wastewater treatment: A review. J. Environ. Chem. Eng. 9: 106115. https://doi.org/https://doi.org/10.1016/j.jece.2021.106115
Wang C.T., Chou W.L. & Kuo Y.M., 2009, Removal of COD from laundry wastewater by electrocoagulation/electroflotation. J. Hazard. Mater. 164: 81–86. https://doi.org/10.1016/j.jhazmat.2008.07.122
Wong T.W., Tam W.W.S., Yu I.T.S., Lau A.K.H., Pang S.W. & Wong A.H.S., 2013, Developing a risk-based air quality health index. Atmos. Environ. 76: 52–58. https://doi.org/10.1016/j.atmosenv.2012.06.071
Xie Z.-H., Zhou H.-Y., He C.-S., Pan Z.-C., Yao G. & Lai B., 2021, Synthesis, application and catalytic performance of layered double hydroxide based catalysts in advanced oxidation processes for wastewater decontamination: A review. Chem. Eng. J. 414: 128713. https://doi.org/https://doi.org/10.1016/j.cej.2021.128713
Yan Y., Zhang H., Wang W., Li W., Ren Y. & Li, X., 2021, Synthesis of Fe0/Fe3O4@porous carbon through a facile heat treatment of iron-containing candle soots for peroxymonosulfate activation and efficient degradation of sulfamethoxazole. J. Hazard. Mater. 411: 124952. https://doi.org/https://doi.org/10.1016/j.jhazmat.2020.124952
Yang L., Liang X., Han Y., Cai Y., Zhao H., Sheng M. & Cao G., 2019, The coupling use of advanced oxidation processes and sequencing batch reactor to reduce nitrification inhibition of industry wastewater: Characterization and optimization. Chem. Eng. J. 360: 1577–1586. https://doi.org/10.1016/j.cej.2018.10.232
Zolfaghari M., Jardak K., Drogui P., Brar S.K., Buelna G. & Dubé R., 2016, Landfill leachate treatment by sequential membrane bioreactor and electro-oxidation processes. J. Environ. Manage. 184: 318–326. https://doi.org/10.1016/j.jenvman.2016.10.010
Zubair M., Daud M., McKay G., Shehzad F. & Al-Harthi M.A., 2017, Recent progress in layered double hydroxides (LDH)-containing hybrids as adsorbents for water remediation. Appl. Clay Sci. 143: 279–292. https://doi.org/10.1016/j.clay.2017.04.002.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 1735
Number of citations: 3