Climatically determined spatial and temporal changes in the biomass of Pinus sp. of Eurasia in the context of the law of the limiting factor
DOI:
https://doi.org/10.12775/EQ.2022.007Keywords
biomass of trees, biomass in stands, database, regression analysis, the principle of space-for-time substitution, the law of the limiting factor, transcontinental level, temperature, precipitationAbstract
Forest ecosystems play an essential role in climate stabilization, and the study of influence of climate change on their biomass and carbon depositing is of paramount importance. The objective of this study was (a) to verify the operation of the law of the limiting factor at the transcontinental level when modeling changes in the biomass of trees and stands of the two-needled subgenus Pinus sp. of Eurasia in relation to geographically determined indicators of temperatures and precipitation, and (b) to show the possibility of using the constructed climate-conditioned models of tree and stand biomass in predicting temporal changes in tree and stand biomass based on the principle of space-for-time substitution. As a result of the implementation of the principles of the limiting factor and space-for-time substitution, a common pattern has been established on tree and stand levels: in sufficiently moisture–rich climatic zones, an increase in temperature by 1°C with a constant amount of precipitation causes an increase in aboveground biomass, and in moisture–deficient zones - its decrease; in warm climatic zones, a decrease in precipitation by 100 mm at a constant average January temperature causes a decrease in aboveground biomass, and in cold climatic zones - its increase.
References
Bergstrom D.M., Wienecke B.C., van den Hoff J., Hughes L., Lindenmayer D.B., Ainsworth T.D., Baker C.M., Bland L., Bowman D.M.J.S., Brooks S.T., Canadell J.G., Constable A.J., Dafforn K.A., Depledge M.H., Dickson C.R., Duke N.C., Helmstedt K.J., Holz A., Johnson C.R., McGeoch M.A., Melbourne-Thomas J., Morgain R., Nicholson E., Prober S.M., Raymond B., Ritchie E.G., Robinson S.A., Ruthrof K.X., Setterfield S.A., Sgrò C.M., Stark J.S., Travers T., Trebilco R., Ward D.F.L., Wardle G.M., Williams K.J., Zylstra P.J. & Shaw J.D., 2021, Combating ecosystem collapse from the tropics to the Antarctic. Global Change Biology 27: 1–12.
Bjorkman A.D., Myers-Smith I.H., Elmendorf S.C., Normand S., Rüger N., Beck P.S.A., Blach-Overgaard A., Blok D., Cornelissen J.H.C., Forbes B.C., Georges D., Goetz S.J., Guay K.C., Henry G.H.R., RisLambers J.H., Hollister R.D., Karger D.N., Kattge J., Manning P., Prevéy J.S., Rixen C., Schaepman-Strub G., Thomas H.J.D., Vellend M., Wilmking M., Wipf S., Carbognani M., Hermanutz L., Lévesque E., Molau U., Petraglia A., Soudzilovskaia N.A., Spasojevic M.J., Tomaselli M., Vowles T., Alatalo J.M., Alexander H.D., Anadon-Rosell A., Angers-Blondin S., te Beest M., Berner L., Björk R.G., Buchwal A., Buras A., Christie K., Cooper E.J., Dullinger S., Elberling B., Eskelinen A., Frei E.R., Grau O., Grogan P., Hallinger M., Harper K.A., Heijmans M.M.P.D., Hudson J., Hülber K., Iturrate-Garcia M., Iversen C.M., Jaroszynska F., Johnstone J.F., Jørgensen R.H., Kaarlejärvi E., Klady R., Kuleza S., Kulonen A., Lamarque L.J., Lantz T., Little C.J., Speed J.D.M., Michelsen A., Milbau A., Nabe-Nielsen J., Nielsen S.S., Ninot J.M., Oberbauer S.F., Olofsson J., Onipchenko V.G., Rumpf S.B., Semenchuk P., Shetti R., Collier L.S., Street L.E., Suding K.N., Tape K.D., Trant A., Treier U.A., Tremblay J.-P., Tremblay M., Venn S., Weijers S., Zamin T., Boulanger-Lapointe N., Gould W.A., Hik D.S., Hofgaard A., Jónsdóttir I.S., Jorgenson J., Klein J., Magnusson B., Tweedie C., Wookey P.A., Bahn M., Blonder B., van Bodegom P.M., Bond-Lamberty B., Campetella G., Cerabolini B.E.L., Chapin III F.S., Cornwell W.K., Craine J., Dainese M., de Vries F.T., Díaz S., Enquist B.J., Green W., Milla R., Niinemets Ü., Onoda Y., Ordoñez J.C., Ozinga W.A., Penuelas J., Poorter H., Poschlod P., Reich P.B., Sandel B., Schamp B., Sheremetev S. & Weiher E., 2018, Plant functional trait change across a warming tundra biome. Nature 562: 57–80.
Blois J.L., Williams J.W., Fitzpatrick M.C., Jackson S.T. & Ferrier S., 2013, Space can substitute for time in predicting climate-change effects on biodiversity. Proceedings of the National Academy of Sciences of the United States of America 110 (23): 9374–9379.
Bojinski S., Verstraete M., Peterson T.C., Richter C., Simmons A. & Zemp M., 2014, The concept of essential climate variables in support of climate research, applications, and policy. Bulletin of the American Meteorological Society 95 (9): 1431–1443.
Camarretta N., Harrison P.A., Lucieer A., Potts B.M., Davidson N. & Hunt M., 2021, Handheld laser scanning detects spatiotemporal differences in the development of structural traits among species in restoration plantings. Remote Sensing 13: Article 1706. https://doi.org/10.3390/rs13091706
Dai A., 2011, Drought under global warming: a review. WIREs Climate Change 2: 45–65.
Dai A. & Zhao T., 2017, Uncertainties in historical changes and future projections of drought. Part I: Estimates of historical drought changes. Climatic Change 144(3): 519-533.
Daly C., Slater M.E., Roberti J.A., Laseter S.H. & Swift L.W., 2017, High resolution precipitation mapping in a mountainous watershed: ground truth for evaluating uncertainty in a national precipitation dataset. International Journal of Climatology 37: 124–137.
Díaz S., Settele J., Brondızio E.S., Ngo H.T., Agard J., Arneth A., Balvanera P., Brauman K.A, Butchart S.H.M., Chan K.M.A., Lucas A.G., Ichii K., Liu J., Subramanian S.M., Midgley G.F., Miloslavich P., Molnár Z., Obura D., Pfaff A., Polasky S., Purvis A., Razzaque J., Reyers B., Chowdhury R.R., Shin Y.J., Visseren-Hamakers I., Willis K.J. & Zayas C.N., 2019, Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366: Article 1327.
Dussarrat T., Decros G., Díaz F.P., Gibon Y., Latorre C., Rolin D., Gutiérrez R.A., Pétriacq P., 2021, Another tale from the harsh world: How plants adapt to extreme environments. Annual Plant Reviews 4: 551–604.
Fischlin A., Ayres M., Karnosky D., Kellomäki S., Louman B., Ong C., Plattner G.K., Santoso H., Thompson I., Booth T.H., Marcar N., Scholes B., Swanston C. & Zamolodchikov D., 2009, Future environmental impacts and vulnerabilities, [in:] R. Seppälä, A. Buck, P. Katila (eds), Adaptation of forests and people to climate change: a global assessment report. IUFRO World Series, Vol. 22: 53–100.
Fonti M.V., 2020, Climatic signal in the parameters of annual rings (wood density, anatomical structure and isotopic composition) of coniferous and deciduous tree species in various natural and climatic zones of Eurasia: Diss. ... Doct. Biol. Sci.: 03.02.08. Krasnoyarsk, Siberian Federal University, 45 pp. https://research.sfu-kras.ru/sites/research.sfu-kras.ru/files/Avtoreferat_Fonti.pdf (in Russian).
Forrester D.I., Tachauer I.H., Annighöefer P., Barbeito I.G., Pretzsch H., Ruiz-Peinado R., Stark H., Vacchiano G., Zlatanov T., Chakraborty T., Saha S. & Sileshi G.W., 2017, Generalized biomass and leaf area allometric equations for European tree species incorporating stand structure, tree age and climate. Forest Ecology and Management 396: 160–175.
Franklin O., Harrison S.P., Dewar R., Farrior C.E., Brännström Å., Dieckmann U., Pietsch S., Falster D., Cramer W., Loreau M., Wang H., Mäkelä A., Rebel K.T., Meron E., Schymanski S.J., Rovenskaya E., Stocker B.D., Zaehle S., Manzoni S., van Oijen M., Wright I.J., Ciais P., van Bodegom P.M., Peñuelas J., Hofhansl F., Terrer C., Soudzilovskaia N.A., Midgley G. & Prentice I.C., 2020, Organizing principles for vegetation dynamics. Nature Plants 6: 444–453.
He X., Lei X.-D. & Dong Li-Hu, 2021, How large is the difference in large-scale forest biomass estimations based on new climate-modified stand biomass models? Ecological Indicators 126: Article 107569.
Jenkins J.C., Chojnacky D.C., Heath L.S. & Birdsey R.A., 2004, Comprehensive database of diameter-based regressions for North American tree species. USDA Forest Service Northeast-ern Research Station. General Technical Report NE-319. 45 pp.
Korzukhin M.D. & Semevsky F.N., 1992, Synecology of the forest. Hydrometeoizdat, St. Petersburg, 192 pp. (in Russian).
LeVine N., Butler A., McIntyre N. & Jackson C., 2016, Diagnosing hydrological limitations of a land surface model: application of JULES to a deep-groundwater chalk basin. Hydrology and Earth System Sciences Discussions 20(1): 143–159.
Liebig J., 1840, Die organische Chemie in ihrer Anwendung auf Agricultur und Physiologie. Verlag Vieweg, Braunschweig. In: Deutsches Textarchiv <http://www.deutschestextarchiv.de/liebig_agricultur_1840> [Abgerufen am 26.11.2019].
Maraun D., Wetterhall F., Ireson A.M., Chandler R.E., Kendon E.J., Widmann M., Brienen S., Rust H.W., Sauter T., Themeß M., Venema V.K.C., Chun K.P., Goodess C.M., Jones R.G., Onof C., Vrac M. & Thiele-Eich I., 2010, Precipitation downscaling under climate change: recent developments to bridge the gap between dynamical models and the end user. Reviews of Geophysics 48(3): RG3003.
Müller A., Weigelt J., Götz A., Schmidt O., Alva I.L., Matuschke I., Ehling U. & Beringer T., 2015, The role of biomass in the sustainable development goals: A reality check and governance implications. IASS Working Paper. Institute for Advanced Sustainability Studies, Potsdam, 36 pp.
Reichstein M., Bahn M., Mahecha M.D., Kattge J. & Baldocchi D.D., 2014, Linking plant and ecosystem functional biogeography. Proceedings of the National Academy of Sciences USA 111: Article 201216065.
Rosen R., 1967, Optimality principles in biology. Butterworths, London. 198 pp.
Sheffield J., Wood E.F. & Roderick M.L., 2012, Little change in global drought over the past 60 years. Nature 491(7424): 435–438.
Shelford V.E., 1913, Animal communities in temperate America as illustrated in the Chicago region: a study in animal ecology. Iss. 5. Part 1. Pub. for the Geographic Society of Chicago by the University of Chicago Press, 362 pp.
Shuman J.K., Shugart H.H., & O’Halloran T.L., 2011, Sensitivity of Siberian larch forests to climate change. Global Change Biology 2: 2370–2384.
Smolonogov E.P., 1995, Forest formation process and genetic classification of forest types. Lesa Urala I Khozyaistvo v nikh (Forests of the Urals and Their Management) 18: 43–58 (in Russian). https://elar.usfeu.ru/bitstream/123456789/4453/1/lesa_urala_18_03.pdf
Solomon S., Qin D., Manning M., Chen Z., Marquis M., Avery K., Tignor M.M.B., LeRoy Miller Jr. H., 2007, Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the International Panel on Climate Change. Cambridge University Press.
Sprugel D.G., 1983, Correcting for bias in log-transformed allometric equations. Ecology 64: 209–210.
Stegen J.C., Swenson N.G., Enquist B.J., White E.P., Phillips O.L., Jorgensen P.M., Weiser M.D., Mendoza A.M. & Vargas P.N., 2011, Variation in above-ground forest biomass across broad climatic gradients. Global Ecology and Biogeography 20 (5): 744–754.
Sun Q., Miao C., Duan Q., Ashouri H., Sorooshian S. & Hsu K.-L., 2018, A review of global precipitation data sets: Data sources, estimation, and intercomparisons. Reviews of Geophysics 56: 79–107. https://doi.org/10.1002/2017RG000574
Tautenhahn S., Migliavacca M. & Kattge J., 2020, News on intra-specific trait variation, species sorting, and optimality theory for functional biogeography and beyond. New Phytologist 228: 6–10.
Trenberth K.E., Dai A., van der Schrier G., Jones P.D., Barichivich J., Briffa K.R. & Sheffield J., 2014, Global warming and changes in drought. Nature Climate Change 4: 17–22.
Usoltsev V.A., 2010, Eurasian forest biomass and primary production data. Yekaterinburg, Ural Branch of Russian Academy of Sciences, 574 p. DOI: 10.13140/RG.2.2.35234.17605. http://elar.usfeu.ru/handle/123456789/2606
Usoltsev V.A., 2020, Single-tree biomass data for remote sensing and ground measuring of Eurasian forests: digital version. The second edition, enlarged. Yekaterinburg, Ural State Forest Engineering University; Botanical Garden, Ural Branch of Russian Academy of Sciences. https://elar.usfeu.ru/bitstream/123456789/9647/2/Base1_v2_ob.pdf
Usoltsev V., Piernik A., Osmirko A., Tsepordey I., Chasovskikh V. & Zukow W., 2019, Forest stand biomass of Picea spp.: an additive model that may be related to climate and civilisational changes. Bulletin of Geography. Socio-Economic Series 45(45): 133–147. http://dx.doi.org/10.1515/18860
Veloz S., Williams J.W., Blois J.L., He F., Otto-Bliesner B. & Liu Z., 2012, No-analog climates and shifting realized niches during the late Quaternary: Implications for 21st-century predictions by species distribution models. Global Change Biology 18: 1698–1713.
Wagers S., Castilla G., Filiatrault M. & Sanchez-Azofeifa G.A., 2021, Using TLS-measured tree attributes to estimate above ground biomass in small black spruce trees. Forests 12: 1521. https://doi.org/10.3390/f12111521
World Weather Maps, 2007. https://www.mapsofworld.com/referrals/weather
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 570
Number of citations: 0