Properties of anaerobic bacteria from ferrosphere crucial for biofilm development
DOI:
https://doi.org/10.12775/EQ.2021.036Keywords
aggregation, Anaerotignum propionicum, biofilm, Desulfovibrio oryzae, hydrogen sulfide production, hydrophobicityAbstract
The purpose of this study was the investigation of biofilm-forming, hydrophobic, sulfidogenic and aggregative properties of sulfate-reducing bacteria Desulfovibrio oryzae strains in monocultures and associations with organic acid-producing bacteria Anaerotignum propionicum. Studies of biofilm formation on polypropylene surface by strains were carried out by a biofilm assay (indirect measurement of bacterial biofilm biomass by crystal violet adsorption/desorption), hydrogen sulfide production was determined by iodometric titration, aggregation - by aggregation test, hydrophobicity - by salt aggregation test. It was found that the studied strains of D. oryzae NUChC SRB1 and NUChC SRB2 are highly adhesive, have high sulfidogenic, aggregation and hydrophobic properties in the complete Postgate’s medium (with Fe2+). During the cultivation of the studied strains of D. oryzae with A. propionicum NUChC Sat1, a significant increase in aggregation (both in complete medium and without Fe2+) and hydrogen sulfide production by sulfate-reducing bacteria were observed. These properties indicate the potentially high biodegradable activity of D. oryzae monocultures NUChC SRB1 and NUChC SRB2 and their associations with A. propionicum NUChC Sat1. The observed increase in the sulfidogenic activity of D. oryzae in association with A. propionicum promotes the corrosion hazard of the studied bacterial association.
References
Abdulina D.R., Asaulenko L.G. & Purish L.M., 2011, Rozpovsiudzhennia koroziino-ahresyvnykh bakterii u gruntakh riznykh biotopiv [Dissemination of corrosive aggressive bacteria in soils of different biotopes]. Studia Biologica 5(1): 11–16 (in Ukrainian). doi:10.30970/sbi.0501.111
Abdulina D.R., Тrynchuk K.G. & Purish L.M., 2015, Kharakterystyka sulfatvidnovliuvalnykh bakterii, izolovanykh z tekhnohennykh ekotopiv [Characteristics of sulfate-reducing bacteria isolated from technogenic ecotopes]. Studia Biologica 9(1): 109–116 (in Ukrainian).
AlAbbas F.M., Williamson Ch., Bhola Sh.M., Spear J.R., Olson D.L., Misra B. et al., 2013, Microbial Corrosion in Linepipe Steel Under the Influence of a Sulfate-Reducing Consortium Isolated from an Oil Field. J. Mater. Eng. Perform. 22(11): 3517–3529. doi:10.1007/s11665-013-0627-7
Andreyuk K., Kozlova I., Kopteva Zh., Pilyashenko-Novokhatny A., Zanina V. & Purish L., 2005, Mikrobna koroziia pidzemnykh sporud [Microbial Corrosion of Underground Structures], Nauk. Dumka Publishing House, Kyiv, 258 pp. (in Ukrainian)
Azeredo J., Azevedo N.F., Briandet R., Cerca N., Coenye T., Costa A.R. et al., 2017, Critical review on biofilm methods. Crit. Rev. Microbiol. 43(3): 313–351. doi:10.1080/1040841X.2016.1208146
Baba R., Morita M., Asakawa S. & Watanabe T., 2017, Transcription of [FeFe]-Hydrogenase Genes during H2 production in Clostridium and Desulfovibrio spp. isolated from a Paddy Field Soil. Microbes Environment. 32(2): 125–132. doi:10.1264/jsme2.ME16171
Dahlbäck B., Hermansson M., Kjelleberg S. & Norkrans B., 1981, The hydrophobicity of bacteria — An important factor in their initial adhesion at the air-water interface. Arch. Microbiol. 128: 267–270. doi:10.1007/BF00422527
Del Re B., Sgorbati B., Miglidi M. & Palenzona D., 2000, Adhesion, autoaggregation and hydrophobicity of 13 strains of Bifidobacterium longum. Lett. Appl. Microbiol. 31: 438–442. doi:10.1046/j.1365-2672.2000.00845.x
Denkhaus E., Meisen S., Telgheder U. & Wingender J., 2007, Chemical and physical methods for characterisation of biofilms. Microchim. Acta 158: 1–27. doi:10/1007/s00604-006-0688-5
Hallbeck L., 2014, Determination of sulphide production rates in laboratory cultures of the sulphate reducing bacterium Desulfovibrio aespoeensis with lactate and H2 as energy sources: The Report, Swedish Nuclear Fuel and Waste Management Co. www.skb.se
Konishi Y., Asai S. & Katoh H., 1990, Bacterial dissolution of pyrite by Thiobacillus ferrooxidans. Bioproc. Eng. 5: 231–237.
Kragh K.N., Hutchison J.B., Melaugh G., Rodesney Ch., Roberts A.E.L., Irie Y., Jensen P.Ø, Diggle S.P., Allen R.J., Gordon V. & Bjarnsholt T., 2016, Role of Multicellular Aggregates in Biofilm Formation. mBio. 7(2): e00237–16. doi:10.1128/mBio.00237-16
Lagun L.V., Tapal'skij D.V. & Zhavoronok S.V., 2012, Intensivnost' obrazovaniya mikrobnyh bioplenok mikroorganizmami, vydelennymi pri pielonefrite i mochekamennoj bolezni [Intensity of formation of microbial biofilms by microorganisms isolated in pyelonephritis and urolithiasis]. Medicinskij Zhurnal 4: 64–67 (in Russian).
Lur'e Yu.Yu., 1984. Analiticheskaya himiya promyshlennyh stochnyh vod [Analytical chemistry of industrial wastewater]. Himiya, Moskva, 448 pp. (in Russian).
Nikolaev Yu.A. & Plakunov V.K., 2007, Bioplenka - "gorod mikrobov" ili analog mnogokletochnogo organizma? [Is biofilm a "city of microbes" or an analogue of a multicellular organism?]. Mikrobiologiya 76(2): 149–163 (in Russian).
Nwanyanwu C.E. & Abu G.O., 2013, Influence of growth media on hydrophobicity of phenol-utilizing bacteria found in petroleum refinery effluent. Int. Res. J. Biological Sci. 2(10): 6–11. www.isca.in
Picard A., Gartman A., Clarke D.R. & Girguis P.R., 2018, Sulfate-reducing bacteria influence the nucleation and growth of mackinawite and greigite. Geochimica et Cosmochimica Acta 220: 367–384. doi:10.1016/j.gca.2017.10.006
Plohinskij N.A., 1970, Biometriya [Biometrics]. Izdatel'stvo Moskovskogo Universiteta, Moskva, 368 pp. (in Russian).
Purish L.M., Asaulenko L.G., Abdulina D.R. et al., 2012, Role of polymer complexes in the formation of biofilms by corrosive bacteria on steel surfaces. Applied Biochemistry and Microbiology 48(3): 262–269. doi:10/1134/S0003683812030118
Purish L.M., Asaulenko L.G., Abdulina D.R. & Iutynskaja G.A., 2014, Bioraznoobrazie sul'fatreduciruyushchih bakterij, razvivayushchihsya na ob"ektah teplosetej [Biodiversity of sulphate-reducing bacteria growing on object of heating system]. Mikrob. Zh. 76(3): 11–17 (in Russian).
Rozanova E.P. & Nazina T.N., 1989, Sovremennye predstavleniya o sul'fatvosstanavlivayushchih bakteriyah, [in:] Hemosintez: K 100-letiyu otkrytiya S.N.Vinogradskim [Modern concepts of sulfate-reducing bacteria, [in:] Chemosynthesis: On the 100th anniversary of the discovery by S.N. Vinogradsky], Moskva: 199–228 (in Russian).
Rozgonyi F., Ljungh Å., Mamo W., Hjertén S. & Wadström T., 1990, Bacterial Cell-Surface Hydrophobicity, [in:] T. Wadström, I. Eliasson, I. Holder, Å. Ljungh (eds.), Pathogenesis of Wound and Biomaterial-Associated Infections. Springer, London: 233–244. doi:10.1007/978-1-4471-3454-1_28
Stenström T.A., 1989, Bacterial hydrophobicity, an overall parameter for the measurement of adhesion potential to soil particles. Appl. Environ. Microbiol. 55(1): 142–147.
Stepanović S., Vuković D., Dakić I., Savić B. & Švabić-Vlahović M., 2000, A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J. Microbiol. Meth. 40: 175–179. doi:10.1016/s0167-7012(00)00122-6
Tkachuk N., Zelena L. & Garkavenko K., 2018, Vydilennia ta identyfikatsiia anaerobnoho suputnyka sulfatvidnovliuvalnykh bakterii. "Shevchenkivska vesna: dosiahnennia biolohichnoi nauky/BioScience Advances": zbirnyk tez XVI Mizhnarodnoi naukovoi konferentsii studentiv ta molodykh vchenykh (Kyiv, 24-27 kvitnia 2018 r.) [Isolation and identification of anaerobic satellite of sulfate-reducing bacteria. "Shevchenko’s spring: achievements of biological science / BioScience Advances": collection of abstracts of the XVI International scientific conference of students and young scientists (Kyiv, April 24-27, 2018)]. Palivoda A.V., Kyiv: 106–107 (in Ukrainian).
Tkachuk N., Zelena L., Mazur P. & Lukash O., 2020, Genotypic, physiological and biochemical features of Desulfovibrio strains in a sulfidogenic microbial community isolated from the soil of ferrosphere. Ecological Questions 31(2): 79–88. doi:10.12775/EQ.2020.016
van Loosdrecht M.C.V., Lyklema J., Norde W., Schraa G. & Zehnder A.J.B., 1987, The Role of Bacterial Cell Wall Hydrophobicity in Adhesion. Appl. Environ. Microb. 53(8): 1893–1897.
Vilinska A., 2007, Bacteria-Sulfide Mineral Interactions with Reference to Flotation and Flocculation. Lisentiate Thesis, 97 pp. http://www.diva-portal.se/smash/get/diva2:998994/FULLTEXT01.pdf
Vorobey E.S., Voronkova O.S. & Vinnikov A.I., 2012, Bakterialni bioplivky. Quorum sensing – “vidchuttia kvorumu” u bakterii v bioplivkakh [Bacterial biofilms. Bacterial Quorum sensing in biofilms]. Visnyk of Dnipropetrovsk University, Biology, ecology 20(1): 13–22 (in Ukrainian). doi:10.15421/011202
Zabielska J., Kunicka-Stryczyńska A. & Otlewska A., 2017, Adhesive and hydrophobic properties of Pseudomonas aeruginosa and Pseudomonas cedrina associated with cosmetics. Ecological Questions 28(4): 41–46. doi:10.12775/EQ.2017.037
Zita A. & Hermansson M., 1997. Determination of bacterial cell surface hydrophobicity of single cells in cultures and in wastewater in situ. FEMS Microbiol. Lett. 152(2): 299–306. doi:10.1111/j.1574-6968.1997.tb10443.x
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 338
Number of citations: 0