New biodegradable polylactide material with antimicrobial properties
DOI:
https://doi.org/10.12775/EQ.2021.035Keywords
agricultural foil, polymer material, mintezol, PLA, biocideAbstract
This study aimed to investigate the bactericidal, fungicidal and non-phytotoxic properties of vapor permeable polylactide films containing five different concentrations (in the range of 0.2–1.0%) of thiabendazole. All films showed bactericidal properties on Staphylococcus aureus and Escherichia coli. Thiabendazole introduced into polylactide affected the antifungal activity of the materials containing 0.8 and 1.0% thiabendazole. The films containing thiabendazole were characterized by increased permeability. The vapor permeability of the film increased with the increase of the biocide content in the composites. The new materials had no a negative effect on the growth and development of monocotyledonous and dicotyledonous plants. It has been shown that the presence of thiabendazole increases the water vapor permeability of polylactide films. The obtained materials are biodegradable and can be used in horticulture and agriculture to protect plants against pathogens. The use of films with biocide properties will reduce the use of plant protection products. This is particularly important due to the need to protect biodiversity in the ecosystem of agricultural soils.
References
Adams W.J., Biddinger G.R., Robillard K.A. & Gorsuch J.W., 1995, A summary of the acute toxicity of 14 phthalate esters to representative aquatic organisms. Environmental Toxicology and Chemistry 14: 1569–1574.
Adamus G., Dacko P., Musioł M., Sikorska W., Sobota M., Biczak R., Herman B., Rychter P., Krasowska K., Rutkowska M. & Kowalczuk M., 2006, Degradation of selected synthetic polyesters in natural conditions. Polimery 51(7–8): 539–546. (in Polish).
Araceli L.T., Gilberto G., Abraham V.T., Raúl R.H. & Cristóbal N.A., 2011, Advances in Bioscience and Biotechnology 2: 52–58.
Auras R.A., Lim L.T., Selke S.E.M. & Tsuji H., 2011, Poly(lactic acid): Synthesis, structures, properties, processing and applications. John Wiley & Sons, Inc.
Bahroun Z. & Belgacem N., 2019, Determination of dynamic safety stocks for cyclic production schedules. Operation Management Research 12 (1–2), 62–93.
Bjørling-Poulsen M., Andersen H.R. & Grandjean P., 2008, Potential developmental neurotoxicity of pesticides used in Europe. Environmental Health 7: 50.
Caumes E., 2000. Treatment of cutaneous larva migrans. Clinic. Infectious Diseases 30: 811–814.
Dąbrowska G.B., Garstecka Z., Olewnik-Kruszkowska E., Szczepańska G., Ostrowski M. & Mierek-Adamska A., 2021, Comparative study of structural changes of polylactide and poly(ethylene terephthalate) in the presence of Trichoderma viride. International Journal of Molecular Sciences 22 (7): 3491. doi: 10.3390/ijms22073491
Dąbrowska G.B., Janczak K. & Richert A., 2021a, Combined use of Bacillus strains and Miscanthus for accelerating biodegradation of poly(lactic acid) and poly(ethylene terephthalate). PeerJ 9: e10957. DOI: 10.7717/peerj.10957
Fritz J., Sandhofer M., Stacher C. & Braun R., 2003, Strategies for detecting ecotoxicological effects of biodegradable polymers in agricultural applications. Macromolecular Symposia 197: 397–410.
Grosicka-Maciąg E., 2011, Biological consequences of oxidative stress induced by pesticides. Advances in Hygiene and Experimental Medicine 65: 357–366.
http://ec.europa.eu/food/fvo/specialreports/pesticide_residues/report_2005_en.pdf http://www.whatischemistry.unina.it/en/agriplast.html
ISO 20645, 2006, Flat textile products. Determination of antibacterial activity. Diffusion method on an agar plate.
ISO 22196, 2011, Measurement of antibacterial activity on plastic and other non-porous surfaces.
ISO 846, 2002, Plastics standard. Evaluation of the action of microorganisms. Method A of the standard Mycelial growth test.
ISO 15106-1, 2007, Plastics. Foils and plates. Determination of the water vapor transmission rate. Part 1: Moisture sensor method.
Jamshidian M., Tehrany E.A., Imran M., Akhtar J.A., Cleymand F. & Desobry S., 2012, Structural, mechanical and barrier properties of active PLA-antioxidant films. Journal of Food Engineering 110: 380–389.
Janczak K., Dąbrowska G.B., Raszkowska-Kaczor A., Kaczor D., Hrynkiewicz A. & Richert A., 2020, Biodegradation of the plastics PLA and PET in cultivated soil with the participation of microorganisms and plants. International Biodeterioration & Biodegradation 155: 1050. https://doi.org/10.1016/j.ibiod.2020.105087
Janczak K., Hrynkiewicz K., Znajewska Z. & Dąbrowska G., 2018, Use of rhizosphere microorganisms in the biodegradation of PLA and PET polymers in compost soil. International Biodeterioration & Biodegradation 130: 65-75. https://doi.org/10.1016/j.ibiod.2018.03.017
Jayasekara R., Harding I., Bowater I. & Lonergan G., 2005, Biodegradability of selected range of polymers and polymer blends and standard methods for assessment of biodegradation. Journal of Polymers and the Environment 13: 231–51.
Liu Q., Jiang L., Shi R. & Zhang L., 2012, Synthesis, preparation, in vitro degradation, and application of novel degradable bioelastomers – A review. Progress in Polymers Science 37: 715–765.
Loos E.E., Anderson S., Day D.H., Jr, Jordan P.C. & Wingate J.D., 2010, "What is a root?". Glossary of linguistic terms. SIL Internation. Retrieved 2010-11-28.
Nair L.S. & Laurencin C.T., 2007, Biodegradable polymers as biomaterials. Progress in Polymers Science 32: 762–798.
Nampoothiri K.M., Nair N.R. & John R.P., 2010, An overview of the recent developments in polylactide (PLA) research. Bioresource Technology 101: 8493–8501.
Nishida H. & Tokiwa Y., 1993, Distribution of poly(β-hydroxybutyrate) and poly(ε-caprolactone) aerobic degrading microorganisms in different environments. Journal of PolymerEnvironmental Degradation 1(3): 227–233.
OECD/OCDE 208, 2006, Guidelines for the testing of chemicals. Terrestrial plant test: Seedling emergence and seedling growth test. Organization for Economic and Cooperation Development, Paris.
Rakotonirainy M.S., Fohrer F. & Flieder F., 1999, Research on fungicides for aerial disinfection by thermal fogging in libraries and archives. International Biodeterioration & Biodegradation 44(2–3): 133–139.
Rhim J.W., Hong S.I. & Ha C.S., 2009, Tensile, water vapor barrier and antimicrobial properties of PLA/nanoclay composite films. LWT-Food Science and Technology 42: 612–617.
Richert A. & Dąbrowska G.B., 2020, Bacterial biofilm on PLA films and methods of its identification. Ecological Questions 31(2): 1–13. http://dx.doi.org/10.12775/EQ.2020.020
Richert A. & Dąbrowska G.B., 2021, Enzymatic degradation and biofilm formation during biodegradation of polylactide and polycaprolactone polymers in various environments. International Journal of Biological Macromolecules 176: 226–232. doi: 10.1016/j.ijbiomac.2021.01.202
Richert A. & Olewnik-Kruszkowska E., 2018, Enzymatic degradation of biostatic materials based on polylactide. Ecological Questions 29(2): 91–97.
Richert A., Olewnik-Kruszkowska E. & Adamska E., 2017, Enzymatic degradation of bactericidal polylactide composites. Przemysł Chemiczny 96(12): 2519–2521. (in Polish).
Richert A., Olewnik-Kruszkowska E. & Tarach I., 2018, Growth of selected fungi on biodegradable films. Ecological Questions 29(4): 63–68.
Rychter P., Biczak R., Herman B., Smyłła A., Kurcok P., Adamus G., et al., 2006, Environmental degradation of polyester blends containing atactic poly(3-hydroxybutyrate). Biodegradation in soil and ecotoxicological impact. Biomacromolecules 7: 3125–3131.
Rychter P., Kawalec M., Sobota M., Kurcok P. & Kowalczuk M., 2010, Study of aliphatic-aromatic copolyester degradation in sandy soil and its ecotoxicological impact. Biomacromolecules 11: 839–847.
Sabu T., Kuruvilla J., Malhotra S.K., Goda K., Sreekala M.S., 2014, Synthesis, structure, and properties of biopolymers (natural and synthetic). Chapt. 2, [in:] R. Francis, S. Sasikumar, G.P. Gopalan (eds.) Polym. Comp. pp. 11–107.
Seretoudi G., Bikiaris D. & Panayiotou C., 2002, Synthesis, characterization and biodegradability of poly(ethylene succinate)/poly(-caprolactone) block copolymers. Polymer 43: 5405–5415.
Singh B. & Sharma N., 2008, Mechanistic implications of plastic degradation. Polymer Degradation and Stability 93: 561–584.
Struciński P., Góralczyk K., Czaja K., Hernik A., Korcz W., Ludwicki J.K., 2007, Ocena ryzyka dla konsumenta przy przekroczeniach najwyższych dopuszczalnych poziomów pozostałości pestycydów (NDP) w żywności. Rocznik PZH 58: 377–388. (in Polish).
Tokiwa Y. & Calabia B.P., 2006, Biodegradability and biodegradation of poly(lactide). Applied Microbiology and Biotechnology 72(2): 244–251.
Torres A., Li S.M., Rousso S. & Vert M., 1996, Screening of microorganisms for biodegradation of poly(lactic-acid) and lactic acid-containing polymers. Applied and Environmental Microbiology 62: 2393–2397.
Tuominen J., Kylma J., Kapanen A., Venelampi O., Itavaara M. & Seppala J., 2002, Biodegradation of lactic acid base polymers under controlled composting conditions and evaluation of the ecotoxicological impact. Biomacromolecules 3: 445–455.
Uchida H., Nakajima-Kambe T., Shigeno-Akutsu Y., Nomura N., Tokiwa Y. & Nakahara T., 2000, Properties of a bacterium which degrades solid poly(tetramethylene succinate)-co-adipate, a biodegradable plastic. FEMS Microbiol. Letters 189(1): 25–29.
Urtuvia V., Villegas P., González M. & Seeger M., 2014, Bacterial production of the biodegradable plastics polyhydroxyalkanoates. International Journal of Biological Macromolecules 70: 208–213.
Woodruff M.A. & Hutmacher D.W., 2010, The return of a forgotten polymer-polycaprolactone in the 21st century. Progress in Polymers Science 35: 1217–1256.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 388
Number of citations: 0