Existing Risks of Forest Fires in Radiation Contaminated Areas: A Critical Review
DOI:
https://doi.org/10.12775/EQ.2021.022Keywords
Chernobyl, forest fire, radionuclides, risks, perspectiveAbstract
The purpose to highlight and focus on the most important risks of forest fires in radiationcontaminated areas, with some detailing of the problem in the Chernobyl Exclusion Zone (CEZ). The search strategy was to collect a sufficient number of relevant publications in ScienceDirect, PubMed, Mendeley, ResearchGate, GoogleScholar from 2006 to the present in English, Russian, Ukrainian. Requests were made on the topics "Forest fires in a radioactively contaminated area" and "Assessing the territories' radiation safety", as well as for the keywords of this study. Analysis of available open information about the CEZ was done. Although, in the future, temperatures are expected to rise in contaminated forests, and the amount of precipitation will remain the same or slightly decrease, which will contribute to an increase in the frequency of fires. Considering the socio-economic situation in Ukraine, the introduction of early detection systems is more profitable than the elimination of the consequences of such emergencies. Investigations have been studied, which were published after 2006 only in English, Russian, and Ukrainian. The most attention is paid to Chernobyl Exclusion Zone. Despite the fact that a lot of studies are devoted to the study of the ecological situation in radioactively contaminated areas, many issues related to safety still concern the population living in this area. The reason for this is intermittent fires, which again and again cover large areas with smoke and cannot be extinguished for a long time. To eliminate anxiety, it is necessary to convey truthful information to the population in the most accessible and convincing way. It was a critical look at numerous studies in this area that made it possible to present concentrated information understandable for most segments of the population. The document concentrates on the most key problems of fires in radioactive forests, shows the intensity of the radionuclides impact on the population and the exposure ways, as well as the probable risks. Such information is necessary to reduce the psychological stress that can be caused by the media influence. Objectively understood situation promotes constructive action in extreme conditions and reduces the likelihood of panic.References
Agapkina G.I., Tikhomirov F.A., Shcheglov A.I., Kracke W. & Bunzl K., 1995, Association of Chernobyl-Derived 239 + 240Pu, 241Am, 90Sr and 137Cs with Organic Matter in the Soil Solution. J. Environ. Radioact. 29: 257–269.
Amiro B.D., Sheppard S.C., Johnston F.L., Evenden W.G. & Harris D.R., 1996, Burning radionuclide question: What happens to iodine, cesium and chlorine in biomass fires? Science of the Total Environment 187(2): 93-103. https://doi.org/10.1016/0048-9697(96)05125-X
Andreae M.O. & Merlet P., 2001, Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles 15(4): 955-966. https://doi.org/10.1029/2000GB001382
Armenteras D., Espelta J.M., Rodríguez N. & Retana J., 2017, Deforestation dynamics and drivers in different forest types in Latin America: Three decades of studies (1980–2010). Global Environmental Change 46: 139-147. https://doi.org/10.1016/j.gloenvcha.2017.09.002
Azarov S.I., Sydorenko V.L. & Sereda Yu.P., 2015a, Radiatsiyni naslidky lisovykh pozhezhv ukrayini. Ekolohichni Nauky 9: 148-153.
Azarov S.I., Sydorenko V.L. & Sereda Yu.P., 2015b, Otsinka radiatsiynoho ryzyku pry hasinni pozhezhi u Chornobylʹsʹkiy zoni. Ekolohichna bezpeka ta pryrodokorystuvannya 2(18): 12-20.
Azarov S.I., Yeremenko S.A., Sydorenko V.L., Smirnova O.M., Biloshytsʹkyy M.V., VlasenkoYE.A., Prusʹkyy A.V., & Sereda YU.P. 2016, Naukovi zasady zakhystu naselennya i terytoriy vid naslidkiv lisovykh pozhezh z radiatsiyno nebezpechnymy faktoramy. TOV "Interdruk", Kyyiv, 203 pp. https://lg.nmc.dsns.gov.ua/files/2019/9/14/NAUKOVI_ZASADI.pdf
Bertschi I.T., Jaffe D.A., Jaeglé L., Price H.U. & Dennison J.B., 2004, PHOBEA/ITCT 2002 airborne observations of transpacific transport of ozone, CO, volatile organic compounds, and aerosols to the northeast Pacific: Impacts of Asian anthropogenic and Siberian boreal fire emissions. Journal of Geophysical Research: Atmospheres 109(D23). http://dx.doi.org/10.1029/2003JD004200
Cary G.J., Keane R.E., Gardner R.H., Lavorel S., Flannigan M., Davies I.D., Li Ch., Lenihan J.M., Rupp T.S. & Mouillot F., 2006, Comparison of the sensitivity of landscape-fire-succession models to variation in terrain, fuel pattern, climate and weather. Landscape Ecology 21(1): 121-137. https://doi.org/10.1007/s10980-005-7302-9
Chin M., Ginoux P., Kinne S., Torres O., Holben B.N., Duncan B.N., Martin R.V., Logan J.A., Higurashi A., Nakajima T., 2002, Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and Sun photometer measurements. Journal of the Atmospheric Sciences 59(3): 461-483. https://doi.org/10.1175/1520-0469(2002)059<0461:TAOTFT>2.0.CO;2
Chiu H.S., Huang P.J., Wuu J.L. & Wang J.J., 2013, Radioactivity inspection of Taiwan for food products imported from Japan after the Fukushima nuclear accident. Applied Radiation and Isotopes, 81: 356–357.
Dimitrakopoulos A., Gogi C., Stamatelos G. & Mitsopoulos I., 2011, Statistical analysis of the fire environment of large forest fires (> 1000 ha) in Greece. Polish Journal of Environmental Studies 20(2): 327-332.
Dvornik A.A., Dvornik A.M., Korol R.A., Shamal N.V., Gaponenko S.O. & Bardyukova A.V., 2018, Potential threat to human health during forest fires in the Belarusian exclusion zone. Aerosol Science and Technology 52(8): 923-932. https://doi.org/10.1080/02786826.2018.1482408
Dvornik A.A., Klementeva E.A. & Dvornik A.M., 2017, Assessment of 137Cs contamination of combustion products and air pollution during the forest fires in zones of radioactive contamination. Radioprotection 52(1): 29-36. DOI: 10.1051/radiopro/2016085
Dushkin A.L. & Karpyshev A.V., 2005, U.S. Patent No. 6886640. Washington, DC: U.S. Patent and Trademark Office. https://patents.google.com/patent/US6886640B1/en.
Evangeliou N. & Eckhardt S., 2020, Uncovering transport, deposition and impact of radionuclides released after the early spring 2020 wildfires in the Chernobyl Exclusion Zone. Scientific Reports 10(1): Article number: 10655. https://doi.org/10.1038/s41598-020-67620-3
Evangeliou N., Balkanski Y., Cozic A., Hao W.M. & Møller A.P., 2014, Wildfires in Chernobyl-contaminated forests and risks to the population and the environment: A new nuclear disaster about to happen?. Environment International 73: 346-358. DOI: 10.1016/j.envint.2014.08.012
Evangeliou N., Balkanski Y., Cozic A., Hao WeiMin, Mouillot F., Thonicke K., Paugam R., Zibtsev S., Mousseau T.A., Wang R., Poulter B., Petkov A., Yue C., Cadule P., Koffi B., Kaiser J.W. & Møller A.P., 2015, Fire Evolution in the Radioactive Forests of Ukraine and Belarus: Future Risks for the Population and the Environment. Ecological Monographs 85: 49–72.
Evangeliou N., Zibtsev S., Myroniuk V., Zhurba M., Hamburger T., Stohl A., Balkanski Y., Paugam R., Mousseau T. A., Møller A. P., Kireev S. I., 2016, Resuspension and atmospheric transport of radionuclides due to wildfires near the Chernobyl nuclear power plant in 2015: an impact assessment. Scientific Reports 6: Article number: 26062.
Filipović-Vinceković N., Barišić D., Mašić N. & Lulić S., 1991, Distribution of fallout radionuclides through soil surface layer. Journal of Radioanalytical and Nuclear Chemistry 148(1): 53-62. https://doi.org/10.1007/bf02060546
Finney M.A., Cohen J.D., McAllister S.S. & Jolly W.M., 2013, On the need for a theory of wildland fire spread. International Journal of Wildland Fire 22(1): 25-36. https://doi.org/10.1071/WF11117
Fromm M.D. & Servranckx R., 2003, Transport of forest fire smoke above the tropopause by supercell convection. Geophysical Research Letters 30(10): 49-1. https://doi.org/10.1029/2002GL016820
Garger E.K., Kashpur V., Paretzke H.G. & Tschiersch J., 1998, Measurement of resuspended aerosol in the Chernobyl area. Radiation and Environmental Biophysics 36(4): 275-283. https://doi.org/10.1007/s004110050082
Goldammer J.G., 2006, Global Forest Resources Assessment 2005. Thematic report on forest fires in the Central Asian Region and adjacent countries/FAO Fire Management Working Paper 16, 45 pp.
Goldammer J.G., Statheropoulos M. & Andreae M.O., 2008, Impacts of vegetation fire emissions on the environment, human health, and security: a global perspective, [in:] A. Bytnerowicz, M. Arbaugh, A. Riebau, C. Andersen (eds), Developments in environmental science 8: 3-36. Elsevier B.V., ISSN: 1474-8177. DOI: 10.1016/S1474-8177(08)00001-6
Gormley A.G., Bell T.L. & Possell M., 2020, Non-additive effects of forest litter on flammability. Fire 3(2): Article number: 12. https://doi.org/10.3390/fire3020012
Grishin A.M. & Filkov A.I., 2005, Prognoz vozniknoveniya i rasprostraneniya lesnykh pozharov. "Praktika", Kemerovo, 202 pp.
Hansen M.C., Potapov P.V., Moore R., Hancher M., Turubanova S.A., Tyukavina A., Thau D., Stehman S.V., Goetz S.J., Loveland T.R., Kommareddy A., Egorov A., Chini L., Justice C.O., Townshend J.R.G., 2013, High-resolution global maps of 21st-century forest cover change. Science 342(6160): 850-853. DOI: 10.1126/science.1244693
Hao W.M., Bondarenko O.O., Zibtsev S. & Hutton D., 2008, Chapter 12 Vegetation Fires, Smoke Emissions, and Dispersion of Radionuclides in the Chernobyl Exclusion Zone, [in:] A. Bytnerowicz, M.J. Arbaugh, A.R. Riebau, C. Andersen (eds). Developments in Environmental Science, Volume 8, pp. 265-275. Elsevier, ISSN 1474-8177, ISBN 9780080556093. https://doi.org/10.1016/S1474-8177(08)00012-0.
Hashimoto S., Ugawa S., Nanko K. & Shichi K., 2012, The total amounts of radioactively contaminated materials in forests in Fukushima, Japan. Scientific Reports 2(1): 1-5. https://doi.org/10.1038/srep00416
Herasymenko V., Pertsovyi I. & Rozputnyi O., 2018, Assessment of the radiation safety of the rural population of the Central forest-steppe of Ukraine in the remote period after the Chernobyl catastrophe. Technology Transfer: fundamental principles and innovative technical solutions, 2018, 30-33. DOI: 10.21303/2585-6847.2018.00768
IAEA (International Atomic Energy Agency), 2001, Present and Future Environmental Impact of the Chernobyl Accident: Study Monitored by an International Advisory Committee Under the Project Management of the Institut de Protection et de Surete Nucleaire (IPSN), France. International Atomic Energy Agency.
Ipatyev V., Bulavik I., Baginsky V., Goncharenko G. & Dvornik A., 1999, Forest and Chernobyl: Forest Ecosystems after the Chernobyl Nuclear Power Plant Accident: 1986–1994. J. Environ. Radioact. 42: 9–38
Itthipoonthanakorn T., Krisanangkura P. & Udomsomporn S., 2013, The study on radioactive contamination in foodstuffs imported from Japan after the Fukushima accident. Journal of Radioanalytical Nuclear Chemistry 297(3): 419–421
Jones M.W., Smith A., Betts R., Canadell J.G., Prentice I.C. & Le Quéré C., 2020, Climate change increases risk of wildfires. ScienceBrief Review 116, Article number 117.
Kashparov V.A., Levchuk S.E., Otreshko L.N. & Maloshtan I.M., 2013, Contamination of agricultural production with 90Sr in Ukraine at the late phase of the Chernobyl accident. Radiatsionnaia Biologiia, Radioecologiia 53(6): 639-650.
Kganyago M., Govender K., Shikwambana L. & Sivakumar V., 2021, Study on blazing wildfires at the outeniqua pass in South Africa during the october/november 2018 period. Remote Sensing Applications: Society and Environment 21: Article number 100464. https://doi.org/10.1016/j.rsase.2020.100464
Khan N.A., Ahmed S., Vambol S., Vambol V. & Farooqi I.H., 2019a, Field hospital wastewater treatment scenario. Ecological Questions 30(3): 57-69. DOI: 10.12775/EQ.2019.022
Khan N.A., Khan S.U., Ahmed S., Farooqi I.H., Hussain A., Vambol S. & Vambol V., 2019b, Smart ways of hospital wastewater management, regulatory standards and conventional treatment techniques: a short review. Smart and Sustainable Built Environment. https://doi.org/10.1108/SASBE-06-2019-0079
Korytchenko K., Sakun О., Dubinin D., Khilko Y., Slepuzhnikov E., Nikorchuk A. & Tsebriuk I., 2018, Experimental investigation of the fire-extinguishing system with a gas-detonation charge for fluid acceleration. Eastern-European Journal of Enterprise Technologies 3(5): 47-54.
Krasnov V.L., Orlov O.O. & Landin V.P., 2007, Suchasna radiolohichna sytuatsiya v lisakh ukrayinsʹkoho Polissya. Lisivnytstvo i Ahrolisomelioratsiya 111: 203–213.
Kurbatskiy N.P., 1962, Tekhnika i taktika tusheniya lesnykh pozharov [Technique and tactics of forest fires fighting]. Academy of Science of the USSR, Moscow, 154 pp.
Kyyivsʹka oblastʹ: ryatuvalʹnyky likvidovuyutʹ pozhezhu na terytoriyi spetsialʹnoho kombinatu "Chornobylʹsʹka pushcha". http://www.mns.gov.ua/news/39133.html
Labunska I., Levchuk S., Kashparov V., Holiaka D., Yoschenko L., Santillo D. & Johnston P., 2021, Current radiological situation in areas of Ukraine contaminated by the Chornobyl accident: Part 2. Strontium-90 transfer to culinary grains and forest woods from soils of Ivankiv district. Environment International 146: Article number 106282. https://doi.org/10.1016/j.envint.2020.106282
Lavoué D., Liousse C., Cachier H., Stocks B.J. & Goldammer J.G., 2000, Modeling of carbonaceous particles emitted by boreal and temperate wildfires at northern latitudes. Journal of Geophysical Research: Atmospheres 105(D22): 26871-26890. https://doi.org/10.1029/2000JD900180.
Lihtarov I.A., Kovgan L.M. & Vasylenko V.V., 2012, General dosimetry certification and results of whole body counter monitoring in the settlements contaminated after the Chernobyl accident. Data on 2011, Collection 14 (in Ukrainian). Ministry of Health Protection of Ukraine, Kyiv.
MAGATE, 2008, Ekologicheskiye posledstviya avarii na Chernobyl'skoy AES i ikh preodoleniye: dvadtsatiletniy opyt. Doklad ekspertnoy gruppy "Ekologiya" Chernobyl'skiy forum. MAGATE, Vena, 180 pp.
McDowell N., Pockman W.T., Allen C.D., Breshears D.D., Cobb N., Kolb T., Plaut J., Sperry J., West A., Williams D.G., Yepez E.A., 2008, Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytologist 178(4): 719-739.
Millán M.M., Estrela M.J. & Badenas C., 1998, Synoptic analysis of meteorological processes relevant to forest fire dynamics on the Spanish Mediterranean coast, [in:] J.M. Moreno (ed.), Large forest fires, p. 1-30. Backhuys Publishers, Leiden.
MNS Ukrayiny, Natsionalʹna dopovidʹ pro stan tekhnohennoyi ta pryrodnoyi bezpeky v Ukrayini. Ofitsiynyy sayt. http://www.mns.gov.ua.
Modugno S., Balzter H., Cole B. & Borrelli P., 2016, Mapping regional patterns of large forest fires in Wildland–Urban Interface areas in Europe. Journal of Environmental Management 172: 112-126. https://doi.org/10.1016/j.jenvman.2016.02.013
Mousseau T.A., Milinevsky G., Kenney-Hunt J. & Møller A.P., 2014, Highly reduced mass loss rates and increased litter layer in radioactively contaminated areas. Oecologia 175(1): 429-437. https://doi.org/10.1007/s00442-014-2908-8
Mozaffari N., Mozaffari N., Elahi S.M., Vambol S., Vambol V., Khan N.A. & Khan N., 2021, Kinetics study of CO molecules adsorption on Al2O3/Zeolite composite films prepared by roll-coating method. Surface Engineering 37(3): 390-399. https://doi.org/10.1080/02670844.2020.1768628
Nihei N., 2013, Radioactivity in agricultural products in Fukushima, [in:] Agricultural Implications of the Fukushima Nuclear Accident, p. 73-85. Springer, Tokyo,
NRBU, 2000, Normy radiatsiynoyi bezpeky Ukrayiny; dopovnennya: Radiatsiynyy zakhyst vid dzherel potentsiynoho oprominennya (NRBU-97/D-2000). https://zakon.rada.gov.ua/rada/show/v0116488-00#Text
Ragimov S., Sobyna V., Vambol S., Vambol V., Zakora A., Strejekurov E., Shalomov V., 2018, Physical modelling of changes in the energy impact on a worker taking into account high-temperature radiation. Journal of Achievements in Materials and Manufacturing Engineering 91(1): 27-33. DOI: 10.5604/01.3001.0012.9654.
Salbu B., Kashparov V., Lind O.C., Garcia-Tenorio R., Johansen M.P., Child D.P., Roos P., Sancho C., 2018, Challenges associated with the behaviour of radioactive particles in the environment. Journal of Environmental Radioactivity 186: 101-115. https://doi.org/10.1016/j.jenvrad.2017.09.001
Smith J.T., Beresford N.A., 2005, Radioactive fallout and environmental transfers, [in:] Chernobyl — Catastrophe and Consequences, p. 35-80. Springer Praxis Books, Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28079-0_2
Smith F.B. & Clark M.J., 1989, Transport and deposition of airborne debris from the Chernobyl nuclear power plant accident with special emphasis on the consequences to the United Kingdom. Meteorological Office Scientific Paper, Vol. 42, 59 pp. ISBN: 0114003580. https://www.osti.gov/etdeweb/biblio/5650933
Sokolov D., Sobyna V., Vambol S. & Vambol V., 2018, Substantiation of the choice of the cutter material and method of its hardening, working under the action of friction and cyclic loading. Archives of Materials Science and Engineering 94(2): 49-54. DOI: 10.5604/01.3001.0012.8658.
Stocks B.J., Mason J.A., Todd J.B., Bosch E.M., Wotton B.M., Amiro B.D., Flannigan M.D., Hirsch K.G., Logan K.A., Martell D.L., Skinner W.R., 2002, Large forest fires in Canada, 1959–1997. Journal of Geophysical Research: Atmospheres 107(D1), FFR 5-1-FFR 5-12. https://doi.org/10.1029/2001JD000484
Su Y. & Li J., 2016, Development of a test device to characterize thermal protective performance of fabrics against hot steam and thermal radiation. Measurement Science and Technology 27(12): Article number 125904. https://doi.org/10.1088/0957-0233/27/12/125904
Syarbaini S., Makhsun M., Wahyudi W., Syahrial S. & Jasmiyati J., 2019, Release of radioactive particulates into the Air during Forest Fire in Riau Province, Indonesia. Atom Indonesia 45(2): 81-87. https://doi.org/10.17146/aij.2019.82
Tonini M., Pereira M.G., Parente J. & Orozco C.V., 2017, Evolution of forest fires in Portugal: from spatio-temporal point events to smoothed density maps. Natural Hazards 85(3): 1489-1510. DOI: 10.1007/s11069-016-2637-x
Tsytsura A.A. & Starokozheva Ye.A., 1999, O primenimosti mekhanokhimicheskogo podkhoda k opisaniyu protsessa geterokoagulyatsii pylevykh aerozoley dispergirovannymi zhidkostyami. Vestnik Orenburgskogo gosudarstvennogo universiteta 1: 37-44.
Vambol S.A., 2013, Sistemy upravleniya ekologicheskoy bezopasnost'yu, kotoryye ispol'zuyut mnogofaznyye dispersnyye struktury (monografiya). Natsional'nyy aerokosmicheskiy universitet im. N.Ye. Zhukovskogo „KHAI”, Khar'kov, 204 pp.
Vambol S., Vambol V., Sobyna V., Koloskov V. & Poberezhna, L., 2018, Investigation of the energy efficiency of waste utilization technology, with considering the use of low-temperature separation of the resulting gas mixtures. Energetika 64(4): 186-195. https://doi.org/10.6001/energetika.v64i4.3893
Vambol S., Vambol V., Sundararajan M. & Ansari I., 2019a, The nature and detection of unauthorized waste dump sites using remote sensing. Ecological Questions 30(3): 43-55. DOI: 10.12775/EQ.2019.018
Vambol S., Vambol V. & Al-Khalidy, K.A.H., 2019b, Experimental study of the effectiveness of water-air suspension to prevent an explosion. Journal of Physics: Conference Series Vol. 1294, No. 7, Article number: 072009. IOP Publishing. https://doi.org/10.1088/1742-6596/1294/7/072009
Van Mantgem P.J. & Stephenson N.L., 2007, Apparent climatically induced increase of tree mortality rates in a temperate forest. Ecology Letters 10(10): 909-916.
Wagner C.V., 1977, Conditions for the start and spread of crown fire. Canadian Journal of Forest Research 7(1): 23-34. https://doi.org/10.1139/x77-004
Woodhead D.S., 1973, Levels of radioactivity in the marine environment and the dose commitment to marine organisms, [in:] Radioactive contamination of the marine environment. IAEA, Vienna, Austria.
Yamada K., Yamaguchi I., Urata H. & Hayashida N., 2020, Survey of awareness of radiation disasters among firefighters in a Japanese prefecture without nuclear power plants. PloS one 15(7): e0236640. https://doi.org/10.1371/journal.pone.0236640
Yang X., Yu Y., Hu H. & Sun L., 2018, Moisture content estimation of forest litter based on remote sensing data. Environmental Monitoring and Assessment 190(7): Article number: 421. https://doi.org/10.1007/s10661-018-6792-2
Yoschenko V.I., Kashparov V.A., Protsak V.P., Lundin S.M., Levchuk S.E., Kadygrib A.M., Zvarich S.I., Khomutinin Yu.V., Maloshtan I.M., Lanshin V.P., Kovtun M.V., Tschiersch J., 2006, Resuspension and redistribution of radionuclides during grassland and forest fires in the Chernobyl exclusion zone, part I. Fire experiments. Journal of Environmental Radioactivity 86(2): 143-163. DOI: 10.1016/j.jenvrad.2005.08.003
Zibtsev S.V., Goldammer J.G., Robinson S. & Borsuk O.A., 2015, Fires in Nuclear Forests: Silent Threats to the Environment and Human Security. International Journal of Forestry and Forest Industries 66: 40–51.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Ecological Questions
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 502
Number of citations: 1