Skip to main content Skip to main navigation menu Skip to site footer
  • Registracija
  • Prijava
  • Language
    • English
    • Deutsch
    • Język Polski
    • Español (España)
    • Italiano
    • Français (Canada)
    • Čeština
    • Français (France)
    • Hrvatski
    • Srpski
    • Українська
  • Menu
  • Početna
  • Forthcoming
  • Trenutni broj
  • Arhiva
  • Ethics
  • Obaveštenja
  • O nama
    • O časopisu
    • Prijave priloga
    • Časopis uređuju
    • Izjava o privatnosti
    • Kontakt
  • Registracija
  • Prijava
  • Language:
  • English
  • Deutsch
  • Język Polski
  • Español (España)
  • Italiano
  • Français (Canada)
  • Čeština
  • Français (France)
  • Hrvatski
  • Srpski
  • Українська

Copernican Journal of Finance & Accounting

MATHEMATICAL MODEL FOR THE EVOLUTIONARY DYNAMIC OF INNOVATION IN CITY PUBLIC TRANSPORT SYSTEMS
  • Početna
  • /
  • MATHEMATICAL MODEL FOR THE EVOLUTIONARY DYNAMIC OF INNOVATION IN CITY PUBLIC TRANSPORT SYSTEMS
  1. Početna /
  2. Arhiva /
  3. God. 7 Br. 2 (2018) /
  4. Articles

MATHEMATICAL MODEL FOR THE EVOLUTIONARY DYNAMIC OF INNOVATION IN CITY PUBLIC TRANSPORT SYSTEMS

Autori

  • Hernán Darío Toro-Zapata Universidad del Quindío Universidad Nacional de Colombia – Manizales http://orcid.org/0000-0001-5519-9182
  • Gerard Olivar-Tost Universidad Nacional de Colombia – Manizales http://orcid.org/0000-0003-1862-4842

DOI:

https://doi.org/10.12775/CJFA.2018.010

Ključne reči

technological change, public transportation investment, public transportation, simulation modeling

Apstrakt

In this study, a mathematical model is formulated and studied from the perspective of adaptive dynamics (evolutionary processes), in order to describe the interaction dynamics between two city public transport systems: one of which is established and one of which is innovative. Each system is to be influenced by a characteristic attribute; in this case, the number of assumed passengers per unit it that can transport. The model considers the proportion of users in each transport system, as well as the proportion of the budget destined for their expansion among new users, to be state variables. Model analysis allows for the determination of the conditions under which an innovative transportation system can expand and establish itself in a market which is initially dominated by an established transport system. Through use of the adaptive dynamics framework, the expected long-term behavior of the characteristic attribute which defines transport systems is examined. This long-term study allows for the establishment of the conditions under which certain values of the characteristic attribute configure coexistence, divergence, or both kinds of scenarios. The latter case is reported as the occurrence of evolutionary ramifications, conditions that guarantee the viability of an innovative transport system. Consequently, this phenomenon is referred to as the origin of diversity.

Reference

Baccini, P., & Brunner, P.H. (2012). Metabolism of the anthroposphere: analysis, evaluation, design. Cambridge: MIT Press. http://dx.doi.org/10.1111/j.1530-9290.2012.00558.x.

Butlin, R.K., Galindo, J., & Grahame, J.W. (2008). Sympatric, parapatric or allopatric: the most important way to classify speciation? Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1506), 2997–3007.

Dercole, F., Dieckmann, U., Obersteiner, M., & Rinaldi, S. (2008). Adaptive dynamics and technological change. Technovation, 28(6), 335–348.

Dercole, F., Prieu, C., & Rinaldi, S. (2010). Technological change and fisheries sustainability: The point of view of Adaptive Dynamics. Ecological Modelling, 221(3), 379–387.

Dercole, F., & Rinaldi, S. (2008). Analysis of evolutionary processes: the adaptive dynamics approach and its applications. Princeton: Princeton University Press.

Dercole, F., & Rinaldi, S. (2010). Evolutionary dynamics can be chaotic: A first example. International journal of bifurcation and chaos, 20(11), 3473–3485. http://dx.doi.org/10.1142/S0218127410027829.

Dieckmann, U., & Law, R. (1996). The dynamical theory of coevolution: a derivation from stochastic ecological processes. Journal of mathematical biology, 34(5–6), 579–612.

Doebeli, M., & Dieckmann, U. (2000). Evolutionary branching and sympatric speciation caused by different types of ecological interactions. The american naturalist, 156(S4), S77–S101.

Geritz, S.A., Meszéna, G., & Metz, J.A. (1998). Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evolutionary ecology, 12(1), 35–57.

Geritz, S.A., Metz, J.A., Kisdi, É., & Meszéna, G. (1997). Dynamics of adaptation and evolutionary branching. Physical Review Letters, 78(10), 2024–2027.

Kennedy, C., Stewart, I. D., Ibrahim, N., Facchini, A., & Mele, R. (2014). Developing a multilayered indicator set for urban metabolism studies in megacities. Ecological Indicators, 47, 7–15. http://dx.doi.org/10.1016/j.ecolind.2014.07.039.

Kuznetsov, Y.A. (2013). Elements of applied bifurcation theory (Vol. 112). Berlin: Springer Science & Business Media.

Lai, C.S., Fisher, S.E., Hurst, J.A., Vargha-Khadem, F., & Monaco, A.P. (2001). A forkheaddomain gene is mutated in a severe speech and language disorder. Nature, 413(6855), 519–523.

Landi, P., & Dercole, F. (2016). The social diversification of fashion. The Journal of Mathematical Sociology, 40(3), 185–205. http://dx.doi.org/10.1080/0022250X.2016.1200039.

Núñez-López, M., Velasco-Hernández, J.X., & Marquet, P.A. (2014). The dynamics of technological change under constraints: adopters and resources. American Institute of Mathematical Sciences, 19(10), 3299–3317. http://dx.doi.org/10.3934/dcdsb.2014.19.3299.

Perko, L. (2013). Differential equations and dynamical systems (Vol. 7). Berlin: Springer Science & Business Media.

(www1) Transmilenio, http://www.transmilenio.gov.co/Publicaciones/nuestro_sistema/Componentes/Infraestructura (accessed: 15.05.2018).

(www2) Metro de Medellín, https://www.metrodemedellin.gov.co/quiénessomos (accessed: 15.05.2018).

Copernican Journal of Finance & Accounting

Downloads

  • PDF (English)

Objavljeno

2019-12-19

Kako citirati

1.
TORO-ZAPATA, Hernán Darío и OLIVAR-TOST, Gerard. MATHEMATICAL MODEL FOR THE EVOLUTIONARY DYNAMIC OF INNOVATION IN CITY PUBLIC TRANSPORT SYSTEMS. Copernican Journal of Finance & Accounting. Online. 19 Децембар 2019. Vol. 7, no. 2, pp. 77-98. [Accessed 4 Јули 2025]. DOI 10.12775/CJFA.2018.010.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Broj časopisa

God. 7 Br. 2 (2018)

Sekcija

Articles

Stats

Number of views and downloads: 670
Number of citations: 0

Search

Search

Browse

  • Indeks autora
  • Issue archive

User

User

Trenutni broj

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Informacije

  • Za čitaoce
  • Za autore
  • Za bibliotekare

Newsletter

Subscribe Unsubscribe

Jezik

  • English
  • Deutsch
  • Język Polski
  • Español (España)
  • Italiano
  • Français (Canada)
  • Čeština
  • Français (France)
  • Hrvatski
  • Srpski
  • Українська

Tags

Search using one of provided tags:

technological change, public transportation investment, public transportation, simulation modeling

cross_check

The journal content is indexed in CrossCheck, the CrossRef initiative to prevent scholarly and professional plagiarism

Gore

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop