Skip to main content Skip to main navigation menu Skip to site footer
  • Registracija
  • Prijava
  • Language
    • English
    • Deutsch
    • Język Polski
    • Español (España)
    • Italiano
    • Français (Canada)
    • Čeština
    • Français (France)
    • Hrvatski
    • Srpski
    • Українська
  • Menu
  • Home
  • Forthcoming
  • Trenutni broj
  • Archives
  • Ethics
  • Obavijesti
  • O časopisu
    • O časopisu
    • Prijave priloga
    • Časopis uređuju
    • Privacy Statement
    • Kontakt
  • Registracija
  • Prijava
  • Language:
  • English
  • Deutsch
  • Język Polski
  • Español (España)
  • Italiano
  • Français (Canada)
  • Čeština
  • Français (France)
  • Hrvatski
  • Srpski
  • Українська

Copernican Journal of Finance & Accounting

Forecasting the Jordanian stock index: modelling asymmetric volatility and distribution effects within a GARCH framework
  • Home
  • /
  • Forecasting the Jordanian stock index: modelling asymmetric volatility and distribution effects within a GARCH framework
  1. Home /
  2. Archives /
  3. Svezak 4 Br. 2 (2015) /
  4. Articles

Forecasting the Jordanian stock index: modelling asymmetric volatility and distribution effects within a GARCH framework

Autor(i)

  • Heitham Al-Hajieh Department of Finance, King Abdulaziz University, Abdullah Sulayman, Jeddah 21589
  • Hashem AlNemer Department of Finance and Insurance, University of Jeddah
  • Timothy Rodgers School of Economics, Finance and Accounting, Coventry University
  • Jacek Niklewski School of Economics, Finance and Accounting, Coventry University

DOI:

https://doi.org/10.12775/CJFA.2015.013

Ključne riječi

GARCH, asymmetry, distributions

Sažetak

The modelling of market returns can be especially problematical in emerging and frontier financial markets given the propensity of their returns to exhibit significant non-normality and volatility asymmetries. This paper attempts to identify which representations within the GARCH family of models can most efficiently deal with these issues. A number of different distributions (normal, Student t, GED and skewed Student) and different volatility of returns asymmetry representations (EGARCH and GJR- -GARCH) are examined. Our data set consists of daily Jordanian stock market returns over the period January 2000 – November 2014. Using both the Superior Predicative Ability (SPA) and Model Confidence Set (MCS) testing frameworks it is found that using GJR-GARCH with a skewed Student distribution most accurately and efficiently forecasts Jordanian market movements. Our findings are consistent with similar research undertaken in respect to developed markets.

References

Al-Hajieh, H., Redhead, K., & Rodgers T. (2011). Investor sentiment and calendar anomaly effects: A case study of the impact of Ramadan on Islamic Middle Eastern markets. Research in International Business and Finance, 25 (3), 345-356. http://dx.doi. org/10.1016/j.ribaf.2011.03.004.

Andrikopoulos, P., Niklewski, J., & Rodgers T. (forthcoming). The portfolio diversification benefits of frontier markets: an investigation into regional effects. Handbook of Frontier Markets. Ed. by Andrikopoulos P., Gregoriou G., and Kallinterakis V. Elsevier.

Assaf, A. (2015). Value-at-Risk analysis in the MENA equity markets: Fat tails and conditional asymmetries in return distributions. Journal of Multinational Financial Management, 29, 30-45. http://dx.doi.org/10.1016/j.mulfin.2014.11.002.

Awartani, B. M., & Corradi, V. (2005). Predicting the volatility of the S&P-500 stock index via GARCH models: the role of asymmetries. International Journal of Forecasting, 21 (1), 167-183. http://dx.doi.org/10.1016/j.ijforecast.2004.08.003.

Balaban, E. (2004). Comparative forecasting performance of symmetric and asymmetric conditional volatility models of an exchange rate. Economics Letters, 83 (1), 99– –105. http://dx.doi.org/10.1016/j.econlet.2003.09.028.

Bentes, S. R., Menezes, R., & Ferreira, N. B. (2013). On the asymmetric behaviour of stock market volatility: evidence from three countries. International Journal of Academic Research, 5 (4), 24-32. http://dx.doi.org/10.7813/2075-4124.2013/5-4/A.4.

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of econometrics, 31 (3), 307-327. http://dx.doi.org/10.1016/0304-4076(86)90063-1.

Brailsford, T. J., & Faff, R. W. (1996). An evaluation of volatility forecasting techniques. Journal of Banking & Finance, 20 (3), 419-438. http://dx.doi.org/10.1016/0378- 4266(95)00015-1.

Brooks, R. (2007). Power arch modelling of the volatility of emerging equity markets. Emerging Markets Review, 8(2), 124-133. http://dx.doi.org/10.1016/j.ememar. 2007.01.002.

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica: Journal of the Econometric Society, 50 (4), 987-1007. http://dx.doi.org/10.2307/1912773.

Engle, R. F., & Ng, V. K. (1993). Measuring and testing the impact of news on volatility. The journal of finance, 48(5), 1749-1778. http://dx.doi.org/10.1111/j.1540-6261.1993. tb05127.x.

Fernández, C., & Steel, M. F. (1998). On Bayesian modeling of fat tails and skewness. Journal of the American Statistical Association, 93(441), 359-371. http://dx.doi.org /10.1080/01621459.1998.10474117.

Glosten, L. R., Jagannathan, R., & Runkle, D. E. (1993). On the relation between the expected value and the volatility of the nominal excess return on stocks. The journal of finance, 48 (5), 1779-1801. http://dx.doi.org/10.1111/j.1540-6261.1993.tb05128.x.

Gokcan, S. (2000). Forecasting volatility of emerging stock markets: linear versus non‐linear GARCH models. Journal of Forecasting, 19 (6), 499-504. http://dx.doi. org/10.1002/1099-131X(200011)19:6%3C499::AID-FOR745%3E3.0.CO;2-P.

Hansen, P. R. (2005). A test for superior predictive ability. Journal of Business & Economic Statistics, 23 (4), 365-380. http://dx.doi.org/10.1198/073500105000000063.

Hansen, P. R., & Lunde, A. (2005). A forecast comparison of volatility models: does anything beat a GARCH (1, 1)?. Journal of applied econometrics, 20 (7), 873-889. http:// dx.doi.org/10.1002/jae.800.

Hansen, P. R., & Lunde, A. (2014). MULCOM 3.00. Econometric toolkit for multiple comparisons. Unpublished working paper.

Hansen, P. R., Lunde, A., & Nason, J. M. (2011). The model confidence set. Econometrica, 79 (2), 453-497. http://dx.doi.org/10.3982/ECTA5771.

Heynen, R. C., & Kat, H. M. (1994). Volatility prediction: a comparison of the stochastic volatility, Garch (1, 1) and Egarch (1, 1) models. The Journal of Derivatives, 2 (2), 50– –65. http://dx.doi.org/10.3905/jod.1994.407912.

Liu, H. C., & Hung, J. C. (2010). Forecasting S&P-100 stock index volatility: The role of volatility asymmetry and distributional assumption in GARCH models. Expert Systems with Applications, 37 (7), 4928-4934. http://dx.doi.org/10.1016/j.eswa.2009.12.022.

Marcucci, J. (2005). Forecasting stock market volatility with regime-switching GARCH models. Studies in Nonlinear Dynamics & Econometrics, 9(4), 1-53. http://dx.doi. org/10.2202/1558-3708.1145.

McMillan, D., Speight, A., & Apgwilym, O. (2000). Forecasting UK stock market volatility. Applied Financial Economics, 10(4), 435-448. http://dx.doi.org/10.1080/ 09603100050031561.

Mittnik, S., Paolella, M. S., & Rachev, S. T. (2000). Diagnosing and treating the fat tails in financial returns data. Journal of Empirical Finance, 7 (3), 389-416. http://dx.doi. org/10.1016/S0927-5398(00)00019-0.

Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach. Econometrica: Journal of the Econometric Society, 59(2), 347-370. http:// dx.doi.org/10.2307/2938260.

Copernican Journal of Finance & Accounting

Downloads

  • PDF (English)

Objavljeno

2015-12-17

How to Cite

1.
AL-HAJIEH, Heitham, ALNEMER, Hashem, RODGERS, Timothy i NIKLEWSKI, Jacek. Forecasting the Jordanian stock index: modelling asymmetric volatility and distribution effects within a GARCH framework. Copernican Journal of Finance & Accounting. Online. 17 prosinac 2015. Vol. 4, no. 2, pp. 9-25. [Accessed 1 srpanj 2025]. DOI 10.12775/CJFA.2015.013.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Broj časopisa

Svezak 4 Br. 2 (2015)

Rubrika

Articles

Stats

Number of views and downloads: 526
Number of citations: 0

Search

Search

Browse

  • Kazalo autora
  • Issue archive

User

User

Trenutni broj

  • Atom logotip
  • RSS2 logotip
  • RSS1 logotip

Informacije

  • Za čitatelje
  • Za autore
  • Za knjižničare

Newsletter

Subscribe Unsubscribe

Jezik / Language

  • English
  • Deutsch
  • Język Polski
  • Español (España)
  • Italiano
  • Français (Canada)
  • Čeština
  • Français (France)
  • Hrvatski
  • Srpski
  • Українська

Tags

Search using one of provided tags:

GARCH, asymmetry, distributions

cross_check

The journal content is indexed in CrossCheck, the CrossRef initiative to prevent scholarly and professional plagiarism

Gore

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop