Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Deutsch
    • Język Polski
    • Español (España)
    • Italiano
    • Français (Canada)
    • Čeština
    • Français (France)
    • Hrvatski
    • Srpski
    • Українська
  • Menu
  • Home
  • Forthcoming
  • Current
  • Archives
  • Ethics
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Deutsch
  • Język Polski
  • Español (España)
  • Italiano
  • Français (Canada)
  • Čeština
  • Français (France)
  • Hrvatski
  • Srpski
  • Українська

Copernican Journal of Finance & Accounting

Evaluation of ATM Cash Demand Process Factors Applied for Forecasting with CI Models
  • Home
  • /
  • Evaluation of ATM Cash Demand Process Factors Applied for Forecasting with CI Models
  1. Home /
  2. Archives /
  3. Vol. 4 No. 2 (2015) /
  4. Articles

Evaluation of ATM Cash Demand Process Factors Applied for Forecasting with CI Models

Authors

  • Gediminas Žylius Department of Automation, Faculty of Electrical and Electronics Engineering, Kaunas University of Technology, Studentų g. 50 - 154, LT - 51367 Kaunas

DOI:

https://doi.org/10.12775/CJFA.2015.025

Keywords

computational intelligence, regression, time series forecasting, cash management, data-based forecasting, daily cash flow

Abstract

The purpose of cash management is to optimize distribution of cash. Effective cash management brings savings to retail banks that are related to: dormant cash reduction; reduced replenishment costs; decrease of cash preparation costs; reduction of cash insurance costs. Optimization of cash distribution for retail banking in ATM and branch networks requires estimation of cash demand/supply in the future. This estimation determines overall cash management efficiency: accurate cash demand estimation reduces bank overall costs. In order to estimate cash demand in the future, cash flow forecasting must be performed that is usually based on historical cash point (ATM or branch) cash flow data. Many factors that are uncertain and may change in time influence cash supply/demand process for cash point. These may change throughout cash points and are related to location, climate, holiday, celebration day and special event (such as salary days and sale of nearby supermarket) factors. Some factors affect cash demand periodically. Periodical factors form various seasonality in cash flow process: daily (related to intraday factors throughout the day), weekly (mostly related to weekend effects), monthly (related to payday) and yearly (related to climate seasons, tourist and student arrivals, periodical celebration days such as New Year) seasons. Uncertain (aperiodic) factors are mostly related to celebration days that do not occur periodically (such as Easter), structural break factors that form long term or permanent cash flow shift (new shopping mall near cash point, shift of working hours) and some may be temporal (reconstruction of nearby building that restricts cash point reachability). Those factors form cash flow process that contains linear or nonlinear trend, mixtures of various seasonal components (intraday, weekly, monthly yearly), level shifts and heteroscedastic uncertainty. So historical data-based forecasting models need to be able to approximate historical cash demand process as accurately as possible properly evaluating these factors and perform forecasting of cash flow in the future based on estimated empirical relationship.

References

Brentnall, A.R., Crowder, M.J., & Hand, D.J. (2008). A statistical model for the temporal pattern of individual automated teller machine withdrawals. Journal of the Royal Statistical Society: Series C (Applied Statistics). 57(1). 43–59. http://dx.doi.org/10.1111/j.1467-9876.2007.00599.x.

Brentnall, A.R., Crowder, M.J., & Hand, D.J. (2010a). Predicting the amount individuals withdraw at cash machines using a random effects multinomial model. Statistical Modeling. 10(2). 197–214. http://dx.doi.org/10.1177/1471082X0801000205.

Brentnall, A.R., Crowder, M.J., & Hand, D.J. (2010b). Predictive-sequential forecasting system developement for cash machine stocking. International Journal of Forecasting.26. 764–776.

Chih-Chung, C., & Chih-Jen, L. (2011). LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology. 2(27). 1–27. http://www.csie.ntu.edu.tw/~cjlin/libsvm (accessed: 29.03.2015).

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning. 20(3). 273–297. http://dx.doi.org/10.1007/BF00994018.

Darwish, S.M. (2013). A methodology to improve cash demand forecasting for ATM network. International Journal of Computer and Electrical Engineering. 5(4). 405–409. http://dx.doi.org/10.7763/IJCEE.2013.V5.741.

Ekinci, Y., Lu, J.C., & Duman, E. (2015). Optimization of ATM cash replenishment with group-demand forecasts. Expert Systems with Applications. 42(7). 3480–3490. http://dx.doi.org/10.1016/j.eswa.2014.12.011.

Gurgul, H., & Suder, M. (2013). Modeling of withdrawals from selected ATMs of the Euronet network. AGH Managerial Economics. 13. 65–82. http://dx.doi.org/10.7494/manage.2013.13.65.

Hagan, M.T., & Menhaj, M. (1994). Training feed-forward networks with the Marquardt algorithm. IEEE Transactions on Neural Networks. 5(6). 989–993.

Huang, G.B., Zhu, Q.Y., & Siew, C.K. (2006). Extreme learning machine: theory and applications.

Neurocomputing. 70. 489–501. http://www.ntu.edu.sg/home/egbhuang/elm_codes.html (accessed: 29.03.2015).

Jang, J.S.R. (1993). ANFIS: adaptive-network-based fuzzy inference systems. IEEE Transactions on Systems, Man, and Cybernetics. 23(3). 665–685. http://dx.doi.org/10.1109/21.256541.

Kumar, P., & Walia, E. (2006). Cash forecasting: An application of artificial neural networks in finance. International Journal of Computer Science & Applications. 3(1).61–77.

Laukaitis, A. (2008). Functional data analysis for cash flow and transactions intensity continuous-time prediction using Hilbert-valued autoregressive processes. European Journal of Operational Research. 185(3). 1607–1614. http://dx.doi.org/10.1016/j.ejor.2006.08.030.

Pelckmans, K., Suykens, J.A.K., Van Gestel, T., De Brabanter, J., Lukas, L., Hamers, B., De Moor, B., & Vandewalle, J. (2002). LS-SVMlab : a Matlab/C toolbox for Least Squares Support Vector Machines. Internal Report 02-44, ESAT-SISTA, KU Leuven, Leuven, Belgium, viewed 14 May 2015. http://www.esat.kuleuven.be/sista/lssvmlab/old/lssvmlab_paper0.pdf (accessed: 29.03.2015).

Rodrigues, P., & Esteves, P. (2010). Calendar effects in daily ATM withdrawals. Economics Bulletin. 30(4). 2587–2597.

Rumelhart, D.E., Hinton, G.E., & Williams, R.J. (1986). Learning representations by backpropagation errors. Nature. 323. 533–536.

Simutis, R., Dilijonas, D., & Bastina, L. (2008). Cash demand forecasting for ATM using neural networks and support vector regression algorithms. Proceedings of the twentieth EURO mini conference on continuous optimization and knowledge-based technologies (EurOPT-2008). Neringa. Lithuania. 416–421.

Simutis, R., Dilijonas, D., Bastina, L., & Friman, J. (2007). A flexible neural network for ATM cash demand forecasting. Proceedings of the sixth WSEAS international conference on computational intelligence, man-machine systems and cybernetics (CIMMACS 07). 162–165.

Specht, D.F. (1991). A general regression neural network. IEEE Transactions on Neural Networks. 2(6). 568–576.

Suykens, J.A.K., Van Gestel, T., De Brabanter, J., De Moor, B., & Vandewalle, J. (2002). Least Squares Support Vector Machines. World Scientific. Singapore.

Tipping M.E. (2001). Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research. 1. 211–244. http://www.miketipping.com/sparsebayes.htm (accessed: 29.03.2015).

Wagner M. (2010). Forecasting daily demand in cash supply chain. American Journal of Economics and Business Administration. 2(4). 377–383. http://dx.doi.org/10.3844/ajebasp.2010.377.383.

Copernican Journal of Finance & Accounting

Downloads

  • PDF

Published

2015-12-17

How to Cite

1.
ŽYLIUS, Gediminas. Evaluation of ATM Cash Demand Process Factors Applied for Forecasting with CI Models. Copernican Journal of Finance & Accounting. Online. 17 December 2015. Vol. 4, no. 2, pp. 211-235. [Accessed 5 July 2025]. DOI 10.12775/CJFA.2015.025.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 4 No. 2 (2015)

Section

Articles

Stats

Number of views and downloads: 731
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Deutsch
  • Język Polski
  • Español (España)
  • Italiano
  • Français (Canada)
  • Čeština
  • Français (France)
  • Hrvatski
  • Srpski
  • Українська

Tags

Search using one of provided tags:

computational intelligence, regression, time series forecasting, cash management, data-based forecasting, daily cash flow

cross_check

The journal content is indexed in CrossCheck, the CrossRef initiative to prevent scholarly and professional plagiarism

Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop