Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Bulletin of Geography. Socio-economic Series

Education level as a catalyst: exploring the relationship between job autonomy, joy of work, and performance among low-skilled physical gig workers in Malaysia
  • Home
  • /
  • Education level as a catalyst: exploring the relationship between job autonomy, joy of work, and performance among low-skilled physical gig workers in Malaysia
  1. Home /
  2. Archives /
  3. No. 69 (2025): September /
  4. Articles

Education level as a catalyst: exploring the relationship between job autonomy, joy of work, and performance among low-skilled physical gig workers in Malaysia

Authors

  • Mei Peng Low Universiti Tunku Abdul Rahman https://orcid.org/0000-0002-3141-3081
  • Mumtaz Ali Memon https://orcid.org/0000-0003-4623-9693

DOI:

https://doi.org/10.12775/bgss-2025-0026

Keywords

gig worker & gig economy, job autonomy, joy of gig work, education level, Malaysia

Abstract

The gig economy has experienced a rise due to the prominence of digital platforms and the worldwide pandemic, leading to many individuals losing their regular income and joining the gig economy. As this phenomenon expands worldwide, Malaysia is no exception. This study examines Malaysian gig work through the lens of the Job Demands-Resources Model (JD-R) by focusing on the unique aspects of job autonomy and joy of work towards the performance of precarious gig work, while considering education level as a moderating factor. Judgmental sampling was applied to locate low-skilled physical gig workers. The hypotheses were validated using the structural equation model (SEM) approach. The novelty of the study is attributed to the examination of “joy of work” among gig workers – a new aspect that is often overlooked...

References

Ahmad, N. (2020). Gig economy: The future of working. International Journal of Communication, Management and Humanities, 1(2): 45-52.

Baber, A. (2024). Labour market engineers: Reconceptualising labour market intermediaries with the rise of the gig economy in the United States. Work, Employment and Society, 38(3): 723-743. DOI: https://doi.org/10.1177/09500170221150087.

Bakker, A.B., & Demerouti, E. (2017). Job demands–resources theory: Taking stock and looking forward. Journal of occupational health psychology, 22(3): 273. DOI: https://doi.org/10.1037/ocp0000056.

Bakker, A.B., & Demerouti, E. (2018). Multiple levels in job demands-resources theory: Implications for employee well-being and performance. In Handbook of well-being. Noba Scholar.

Bakke, D.W. (2010). Joy at work: A revolutionary approach to fun on the job. PVG.

Bauer, G.F., Hämmig, O., Schaufeli, W.B., & Taris, T.W. (2014). A critical review of the job demands-resources model: Implications for improving work and health. Bridging occupational, organizational and public health: A transdisciplinary approach, 43-68.

Benitez-Marquez, M.D., Sanchez-Teba, E.M., Bermudez-Gonzalez, G., & Nunez-Rydman, E.S. (2022). Generation Z within the Workforce and in the Workplace: A Bibliometric Analysis. Frontiers in psychology, 12: 736820. DOI: https://doi.org/10.3389/fpsyg.2021.736820.

Becker, G.S. (1962). Investment in human capital: A theoretical analysis. Journal of political economy, 70(5): 9-49.

Behl, A., Sampat, B., & Raj, S. (2021). Productivity of gig workers on crowdsourcing platforms through artificial intelligence and gamification: a multi-theoretical approach. The TQM Journal, 1-25. DOI: https://doi.org/10.1108/TQM-07-2021-0201.

Cheah, J.H., Kersten, W., Ringle, C.M., & Wallenburg, C. (2023). Guest editorial: Predictive modeling in logistics and supply chain management research using partial least squares structural equation modeling. International Journal of Physical Distribution & Logistics Management, 53(7/8): 709-717. DOI: https://doi.org/10.1108/IJPDLM-08-2023-552.

Clausen, T., Pedersen, L.R.M., Andersen, M.F., Theorell, T., & Madsen, I.E. (2022). Job autonomy and psychological well-being: A linear or a non-linear association? European Journal of Work and Organizational Psychology, 31(3): 395-405.

DOI: https://doi.org/10.1080/1359432X.2021.1972973.

Cohen, J. (1988). Statistical power analysis for the behavioural sciences. Hillsdale, New Jersey. DOI: https://doi.org/10.4324/9780203771587.

Cropanzano, R., Keplinger, K., Lambert, B.K., Caza, B., & Ashford, S.J. (2023). The organizational psychology of gig work: An integrative conceptual review. Journal of Applied Psychology, 108(3): 492. DOI: https://doi.org/10.1037/apl0001029.

Deci, E.L., & Ryan, R.M. (1985). The general causality orientations scale: Self-determination in personality. Journal of research in personality, 19(2): 109-134. DOI: https://doi.org/10.1016/0092-6566(85)90023-6.

Demerouti, E., Bakker, A.B., Nachreiner, F., & Schaufeli, W.B. (2001). The job demands-resources model of burnout. Journal of Applied psychology, 86(3): 499. DOI: https://doi.org/103710021-9010863499.

De Groen, W.P., Kilhoffer, Z., Lenaerts, K., & Salez, N. (2017). The impact of the platform economy on job creation. Intereconomics, 52: 345-351.

De Stefano, V. (2015). The rise of the just-in-time workforce: On-demand work, crowdwork, and labor protection in the gig-economy. Comp. Lab. L. & Pol'y J., 37: 471.

De Spiegelaere, S., Van Gyes, G., & Van Hootegem, G. (2016). Not all autonomy is the same. Different dimensions of job autonomy and their relation to work engagement & innovative work behavior. Human Factors and Ergonomics in Manufacturing & Service Industries, 26(4): 515-527. DOI: https://doi.org/10.1002/hfm.20666.

Demerouti, E., Bakker, A.B., Nachreiner, F., & Schaufeli, W.B. (2001). The job demands-resources model of burnout. Journal of Applied psychology, 86(3), 499.

Di Fabio, A., & Kenny, M.E. (2019). Resources for enhancing employee and organizational well-being beyond personality traits: The promise of Emotional Intelligence and Positive Relational Management. Personality and Individual Differences, 151: 109278.

Duggan, J., Carbery, R., McDonnell, A., & Sherman, U. (2023). Algorithmic HRM control in the gig economy: The app‐worker perspective. Human Resource Management, 62(6), 883-899. DOI: https://doi.org/10.1002/hrm.22168.

Duggan, J., Sherman, U., Carbery, R., & McDonnell, A. (2022). Boundaryless careers and algorithmic constraints in the gig economy. The International Journal of Human Resource Management, 33(22): 4468-4498. DOI: https://doi.org/10.1080/09585192.2021.1953565.

Faul, F., Erdfelder, E., Buchner, A., & Lang, A.G. (2009). Statistical power analyses using G* Power 3.1: Tests for correlation and regression analyses. Behavior research methods, 41(4): 1149-1160.

DOI: http://dx.doi.org/10.3758/BRM.41.4.1149.

Farooq, R., & Sultana, A. (2022). The potential impact of the COVID-19 pandemic on work from home and employee productivity. Measuring Business Excellence, 26(3): 308-325.

Gold, A.H., Malhotra, A., & Segars, A.H. (2001). Knowledge management: An organizational capabilities perspective. Journal of management information systems, 18(1): 185-214. DOI: https://doi.org/10.1080/07421222.2001.11045669.

Hair, J.F., Sarstedt, M., & Ringle, C.M. (2019). Rethinking some of the rethinking of partial least squares. European Journal of Marketing, 53(4): 566-584. DOI: https://doi.org/10.1108/EJM-10-2018-0665.

Henseler, J., Ringle, C.M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the academy of marketing science, 43: 115-135. DOI: https://doi.org/10.1007/s11747-014-0403-8.

Jabagi, N., Croteau, A.M., Audebrand, L. ., & Marsan, J. (2019). Gig-workers’ motivation: Thinking beyond carrots and sticks. Journal of Managerial Psychology, 34(4): 192-213. DOI: https://doi.org/10.1108/JMP-06-2018-0255.

Johan, Z.J., Yusoff, R.M., Daud, A., & Sulaiman, S. (2022). The Aspects of Job Quality and Work Precarity of On-Demand Gig Workers: A Systematic Literature Review. Journal of Advanced Research in Business and Management Studies, 27(1): 10-15. DOI: https://doi.org/10.55248/gengpi.5.0924.2666.

Jena, L.K., & Pradhan, S. (2017). Joy at work: Initial measurement and validation in Indian context. The Psychologist-Manager Journal, 20(2): 106–122. DOI: https://doi.org/10.1037/mgr0000051.

Jordan, P.J., & Troth, A.C. (2020). Common method bias in applied settings: The dilemma of researching in organizations. Australian Journal of Management, 45(1): 3-14. DOI: https://doi.org/10.1177/0312896219871976.

Keegan, A., & Meijerink, J. (2022). Voice in platform-enabled gig work. In Missing Voice? Edward Elgar Publishing.

Kramer, A., & Kramer, K.Z. (2020). The potential impact of the Covid-19 pandemic on occupational status, work from home, and occupational mobility. Journal of vocational behavior, 119: 103442. DOI: https://doi.org/10.1016/j.jvb.2020.103442.

Kock, N. (2015). Common method bias in PLS-SEM: A full collinearity assessment approach. International Journal of e-Collaboration (IJEC), 11(4): 1-10. DOI: https://doi.org/10.4018/ijec.2015100101.

Kuhn, K.M., & Galloway, T.L. (2019). Expanding perspectives on gig work and gig workers. Journal of Managerial Psychology, 34(4): 186-191. DOI: http://dx.doi.org/10.1108/JMP-05-2019-507.

Lee, M.K., Kusbit, D., Metsky, E., & Dabbish, L. (2015). Working with machines: The impact of algorithmic and data-driven management on human workers. In Proceedings of the 33rd annual ACM conference on human factors in computing systems. DOI: https://doi.org/10.1145/2702123.2702548.

Liengaard, B.D., Sharma, P.N., Hult, G. T.M., Jensen, M.B., Sarstedt, M., Hair, J.F., & Ringle, C.M. (2021). Prediction: coveted, yet forsaken? Introducing a cross‐validated predictive ability test in partial least squares path modeling. Decision Sciences, 52(2): 362-392. DOI: https://doi.org/10.1111/deci.12445.

Low, M.P., Cham, T.H., Chang, Y.S., & Lim, X.J. (2021). Advancing on weighted PLS-SEM in examining the trust-based recommendation system in pioneering product promotion effectiveness. Quality & Quantity, 1–30. DOI: https://doi.org/10.1007/s1113 5-021-01147-1.

Low, M.P., Seah, C.S., Khin, A.A., & Har, W.M. (2024). Unveiling the upsides of low-skilled physical gig work: insights from the gig workers’ perspective in Malaysia. Labour and Industry, 1-29. DOI: https://doi.org/10.1080/10301763.2024.2357896.

MacKenzie, S.B., & Podsakoff, P.M. (2012). Common method bias in marketing: Causes, mechanisms, and procedural remedies. Journal of retailing, 88(4): 542-555. DOI: https://doi.org/10.1016/j.jretai.2012.08.001.

Manyika, J., Lund, S., Bughin, J., Robinson, K., Mischke, J., & Mahajan, D. (2016). Independent-Work-Choice-necessity-and-the-gig-economy. McKinsey Global Institute.

Memon, M.A., Ting, H., Cheah, J.H., Thurasamy, R., Chuah, F., & Cham, T.H. (2020). Sample size for survey research: Review and recommendations. Journal of Applied Structural Equation Modeling, 4(2): 1-20.

Morgeson, F.P., & Humphrey, S.E. (2006). The Work Design Questionnaire (WDQ): Developing and validating a comprehensive measure for assessing job design and the nature of work. Journal of Applied Psychology, 91(6): 1321–1339. DOI: https://doi.org/10.1037/0021-9010.91.6.1321.

Nguyen-Phuoc, D.Q., Nguyen, N.A.N., Nguyen, M.H., Nguyen, L.N.T., & Oviedo-Trespalacios, O. (2022). Factors influencing road safety compliance among food delivery riders: An extension of the job demands-resources (JD-R) model. Transportation research part A: policy and practice, 166: 541-556. DOI: https://doi.org/10.1016/j.tra.2022.11.002.

Nguyen-Phuoc, D.Q., Nguyen, L.N.T., Su, D.N., Nguyen, M.H., & Oviedo-Trespalacios, O. (2023). Deadly meals: The influence of personal and job factors on burnout and risky riding behaviours of food delivery motorcyclists. Safety science, 159: 106007.

Pang, J. (2022). The Impact of Gig Economy. The Sun. Available at: https://www.thesundaily.my/home/impact-of-gig-economy-CH9823136.

Palvalin, M., Vuolle, M., Jääskeläinen, A., Laihonen, H., & Lönnqvist, A. (2015). SmartWoW – constructing a tool for knowledge work performance analysis. International Journal of Productivity and Performance Management, 64(4): 479–498. DOI: https://doi.org/10.1108/IJPPM-06-2013-0122.

Peccei, R., & Van De Voorde, K. (2019). Human resource management–well‐being–performance research revisited: Past, present, and future. Human Resource Management Journal, 29(4): 539-563. DOI: https://doi.org/10.1111/1748-8583.12254.

Pichault, F., & McKeown, T. (2019). Autonomy at work in the gig economy: analysing work status, work content and working conditions of independent professionals. New Technology, Work and Employment, 34(1): 59-72. DOI: https://doi.org/10.1111/ntwe.12132.

Rahim, A.F.A., Yaacob, N.A., Noor, R.M., Najid, N.A., & Zulkifli, N. (2021). Strengthening the gig economy. Gading Journal for Social Sciences, 24(04): 17-26. DOI: https://doi.org/https://doi.org/10.24191/gading.v24i04.252.

Reynolds, J., & Kincaid, R. (2023). Gig work and the pandemic: Looking for good pay from bad jobs during the COVID-19 crisis. Work and Occupations, 50(1): 60-96. DOI: https://doi.org/10.1177/07308884221128511.

Rosenblat, A., Levy, K.E., Barocas, S., & Hwang, T. (2017). Discriminating tastes: Uber's customer ratings as vehicles for workplace discrimination. Policy & Internet, 9(3): 256-279. DOI: https://doi.org/10.1002/poi3.153.

Ryan, R.M., & Deci, E.L. (2000). Intrinsic and extrinsic motivations: Classic definitions and new directions. Contemporary Educational Psychology, 25(1): 54-67. DOI: https://doi.org/10.1006/ceps.1999.1020.

Scholz, T. (2017). Uberworked and underpaid: How workers are disrupting the digital economy. John Wiley & Sons.

Schlachter, S., McDowall, A., Cropley, M., & Inceoglu, I. (2018). Voluntary work‐related technology use during non‐work time: A narrative synthesis of empirical research and research agenda. International Journal of Management Reviews, 20(4): 825-846. DOI: https://doi.org/10.1111/ijmr.12165.

Schmidt, F.A. (2017). Digital labour markets in the platform economy: Mapping the political challenges of crowd work and gig work.

Sharma, P.N., Liengaard, B.D., Hair, J.F., Sarstedt, M., & Ringle, C.M. (2022). Predictive model assessment and selection in composite-based modeling using PLS-SEM: extensions and guidelines for using CVPAT. European Journal of Marketing, 57(6): 1662-1677. DOI: https://doi.org/10.1108/EJM-08-2020-0636.

Shapiro, A. (2018). Between autonomy and control: Strategies of arbitrage in the “on-demand” economy. New Media & Society, 20(8): 2954-2971. DOI: https://doi.org/10.1177/1461444817738236.

Spurk, D., & Straub, C. (2020). Flexible employment relationships and careers in times of the COVID-19 pandemic. Journal of Vocational Behavior, 119: 103435. DOI: https://doi.org/10.1016/j.jvb.2020.103435.

Stanford, J. (2017). The resurgence of gig work: Historical and theoretical perspectives. The Economic and Labour Relations Review, 28(3): 382-401. DOI: https://doi.org/10.1177/1035304617724303.

Theurer, C.P., Tumasjan, A., & Welpe, I.M. (2018). Contextual work design and employee innovative work behavior: When does autonomy matter? PloS one, 13(10): e0204089. DOI: https://doi.org/10.1371/journal.pone.0204089.

Ulrych, W. (2022). The mediating role of job autonomy between performance feedback and work performance: A millennial perspective. Human Systems Management, 41(4): 423-433. DOI: https://doi.org/10.3233/HSM-211513.

Wan, Z., Zhang, L., Wang, L., & Zhang, F. (2024). Navigating autonomy: Unraveling the dual influence of job autonomy on workplace well-being in the gig economy. Frontiers in Psychology, 15: 1369495. DOI: https://doi.org/10.3389/fpsyg.2024.1369495.

Wang, H., Jia, H., Sun, H., & Li, A. (2019). Constant connectivity attenuates autonomy: Mechanism and consequences. Advances in Psychological Science, 27(11): 1802. DOI: https://doi.org/10.3724/SP.J.1042.2019.01802.

Watson, G.P., Kistler, L.D., Graham, B.A., & Sinclair, R.R. (2021). Looking at the gig picture: Defining gig work and explaining profile differences in gig workers’ job demands and resources. Group & Organization Management, 46(2): 327-361. DOI: https://doi.org/10.1177/1059601121996548.

Wood, A.J., Graham, M., Lehdonvirta, V., & Hjorth, I. (2019). Good gig, bad gig: autonomy and algorithmic control in the global gig economy. Work, employment and society, 33(1): 56-75. DOI: https://doi.org/10.1177/0950017018785616.

Zaman, U., Nawaz, S., Javed, A., & Rasul, T. (2020). Having a whale of a time: Linking self-determination theory (SDT), job characteristics model (JCM) and motivation to the joy of gig work. Cogent Business & Management, 7(1): 1807707. DOI: https://doi.org/10.1080/23311975.2020.1807707.

Bulletin of Geography. Socio-economic Series

Downloads

  • PDF

Published

2025-07-25

How to Cite

1.
LOW, Mei Peng and MEMON, Mumtaz Ali. Education level as a catalyst: exploring the relationship between job autonomy, joy of work, and performance among low-skilled physical gig workers in Malaysia. Bulletin of Geography. Socio-economic Series. Online. 25 July 2025. No. 69, pp. 37-52. [Accessed 8 December 2025]. DOI 10.12775/bgss-2025-0026.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

No. 69 (2025): September

Section

Articles

License

Copyright (c) 2025 Mei Peng Low, Mumtaz Ali Memon

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Title, logo and layout of journal Bulletin of Geography. Socio-economic Series are reserved trademarks of Bulletin of Geography. Socio-economic Series.

Stats

Number of views and downloads: 417
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

gig worker & gig economy, job autonomy, joy of gig work, education level, Malaysia
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop