Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Bulletin of Geography. Socio-economic Series

Rainwater harvesting for watering greenery at Polish university as a climate change adaptation strategy
  • Home
  • /
  • Rainwater harvesting for watering greenery at Polish university as a climate change adaptation strategy
  1. Home /
  2. Archives /
  3. No. 67 (2025): March /
  4. Articles

Rainwater harvesting for watering greenery at Polish university as a climate change adaptation strategy

Authors

  • Weronika Rosińska Wrocław University of Science and Technology https://orcid.org/0000-0002-5388-3172
  • Kornelia Przestrzelska Politechnika Wrocławska https://orcid.org/0000-0002-6066-3063
  • Katarzyna Wartalska Politechnika Wrocławska https://orcid.org/0000-0002-5855-3607
  • Martyna Grzegorzek Politechnika Wrocławska https://orcid.org/0000-0002-6245-9090
  • Marcin Wdowikowski Politechnika Wrocławska https://orcid.org/0000-0003-2693-0946
  • Zuzanna Czerska https://orcid.org/0009-0000-2380-6478
  • Bartosz Kaźmierczak Politechnika Wrocławska https://orcid.org/0000-0003-4933-8451

DOI:

https://doi.org/10.12775/bgss-2025-0001

Keywords

rainwater harvesting system, modeling, climate change, watering green spaces, sustainable development

Abstract

Considering progressive climate change and decreasing water resources, rainwater harvesting is gaining popularity as an alternative water source. This research presents the concept of sustainable rainwater management at the Wrocław University of Science and Technology (Poland). In the proposed solution, rainwater collected in a tank will be used for watering green areas. The Yield After Spillage model was used for analyzing the rainwater harvesting system operation, based on water demand (10 m3/day) and rainfall data for the 2000–2021 period. Simulations were performed for 14 tank sizes (from 10 to 140 m3). For each variant, annual needs coverage, water savings and investment costs were calculated. The results indicated that the most attractive in terms of both return period and mains water savings were tanks with intermediate capacities, with the best variant having a capacity of 60 m3 (corresponding to 6 days’ demand), allowing for mains water savings of 77.2% on average.

References

Abbass, K., Qasim, M.Z., Song, H., Murshed, M., Mahmood, H., & Younis I. (2022). A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environmental Science and Pollution Research, 29: 42539–42559. DOI: https://doi.org/10.1007/s11356-022-19718-6.

Adugna, D., Jensen, M., Lemma, B. & Gebrie, G. (2018). Assessing the Potential for Rooftop Rainwater Harvesting from Large Public Institutions. International Journal of Environmental Research and Public Health, 15(2): 336.

DOI: https://doi.org/10.3390/ijerph15020336.

Ahmed, M.F. (1999). Rainwater harvesting potentials in Bangladesh. In: Pickford, J. (ed). Integrated development for water supply and sanitation: Proc. 25th WEDC International Conference, 363–365.

Bonnet, J., Devel, C., Faucher, P. & Roturier, J. (2002). Analysis of electricity and water end-uses in university campuses: case-study of the University of Bordeaux in the framework of the Ecocampus European Collaboration. Journal of Cleaner Production, 10(1): 13–24. DOI: https://doi.org/10.1016/s0959-6526(01)00018-x.

Almeida, A.P., Liberalesso, T., Silva, C.M. & Sousa, V. (2023). Combining green roofs and rainwater harvesting systems in university buildings under different climate conditions. The Science of the Total Environment, 887: 163719. DOI: https://doi.org/10.1016/j.scitotenv.2023.163719.

Bazazzadeh, H., Pilechiha, P., Nadolny, A., Mahdavinejad, M. & Hashemi Safaei, S.S. (2021). The impact assessment of climate change on building energy consumption in Poland. Energies, 14(14): 4084.

DOI: https://doi.org/10.3390/en14144084.

Blachowski, J. & Hajnrych, M. (2021). Assessing the cooling effect of four urban parks of different sizes in a temperate continental climate zone: Wroclaw (Poland). Forests, 12(8): 1136. DOI: https://doi.org/10.3390/f12081136.

Brosse, M., Benateau, S., Gaudard, A., Stamm, C. & Altermatt, F. (2022). The importance of indirect effects of climate change adaptations on alpine and pre-alpine freshwater systems. Ecological Solutions and Evidence, 3(1): 12127. DOI: https://doi.org/10.1002/2688-8319.12127.

Burchard-Dziubińska, M. & Grzelak, M. (2022). A regional variation in the vulnerability of socioeconomic systems to climate change. A case study of Poland. Optimum. Economic Studies, 2(108): 50–66. DOI: 10.15290/oes.2022.02.108.04.

Canales, F.A., Gwoździej-Mazur, J., Jadwiszczak, P., Struk-Sokołowska, J., Wartalska, K., Wdowikowski, M. & Kaźmierczak, B. (2020). Long-Term Trends in 20-Day Cumulative Precipitation for Residential Rainwater Harvesting in Poland. Water, 12(7): 1932. DOI: https://doi.org/10.3390/w12071932.

Cardoso, R.N.C., Blanco, C.J.C. & Duarte, J.M. (2020). Technical and financial feasibility of rainwater harvesting systems in public buildings in Amazon, Brazil. Journal of Cleaner Production, 260: 121054. DOI: https://doi.org/10.1016/j.jclepro.2020.121054.

Castellari, S. & Kurnik, B. (2017). Climate change, impacts and vulnerability in Europe. European Environment Agency, Publications Office of the European Union, Luxembourg.

Dach, Z. (2012). Mikroekonomia (Microeconomy - in Polish). Publishing House of the Cracow University of Economics, Cracow.

de Graaf, I.E.M., Gleeson, T., (Rens) van Beek, L.P.H., Sutanudjaja, E.H. & Bierkens, M.F.P. (2019). Environmental flow limits to global groundwater pumping. Nature, 574(7776): 90–94. DOI: https://doi.org/10.1038/s41586-019-1594-4.

Dias, D.F.C., Abily, M., Ribeiro, J.M., Jouhara, H. & Katsou, E. (2024). Screening Rainwater Harvesting Potentialities in the EU Industrial Sector: A Framework for Site-Specific Assessment. Water, 16(12): 1758. DOI: https://doi.org/10.3390/w16121758.

Dobrowolski, D. (2021). Świat a zmiany klimatyczne (The world and climate change – in Polish). Available at: https://globalna.ceo.org.pl/wp-content/uploads/sites/4/2021/09/m4_swiat_a_zmiany_klimatyczne_0.pdf (Accessed: 12 January 2024).

European Commission (2023). Causes of climate change. Available at: https://climate.ec.europa.eu/climate-change/causes-climate-change_en (Accessed: 12 January 2024).

European Environment Agency, EEA (2022). Water abstraction by source and economic sector in Europe. Available at: https://www.eea.europa.eu/ims/water-abstraction-by-source-and (Accessed: 12 January 2024).

European Environment Agency, EEA (2021). Water resources across Europe: confronting water stress: an updated assessment. Copenhagen.

European Environmental Agency, EEA (2012). Water resources in Europe in the context of vulnerability: EEA 2012 state of water assessment. Copenhagen. Available at: https://www.eea.europa.eu/publications/water-resources-and-vulnerability (Accessed: 14 January 2024).

European Parliament (2023). Climate change in Europe: facts and figures. Available at: https://www.europarl.europa.eu/news/en/headlines/society/20180703STO07123/climate-change-in-europe-facts-and-figures (Accessed: 12 January 2024).

EU (2020). Regulation 2020/741. Regulation (EU) 2020/741 of the European Parliament and of the Council of 25 May 2020 on Minimum Requirements for Water Reuse. Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32020R0741 (Accesseed: 01 June 2024).

Falarz, M. (2021). Climate change in Poland: past, present, future. Springer, Cham. DOI: https://doi.org/10.1007/978-3-030-70328-8.

Fan, X., Zhang, X., Yu, A., Speitel, M. & Yu, X. (2023). Assessment of the impacts of climat change on water supply system pipe failures. Scientific Reports, 13: 7349. DOI: https://doi.org/10.1038/s41598-023-33548-7.

Farreny, R., Gabarrell, X. & Rieradevall, J. (2011). Cost-efficiency of rainwater harvesting strategies in dense Mediterranean neighbourhoods. Resources Conservation and Recycling, 55(7): 686–694. DOI: https://doi.org/10.1016/j.resconrec.2011.01.008.

Fewkes, A. (2000). Modelling the performance of rainwater collection systems: towards a generalised approach. Urban Water, 1(4): 323–333. DOI: https://doi.org/10.1016/S1462-0758(00)00026-1.

Gabryszewski, T. (1983). Waterworks. Arkady, Warszawa.

Garnier, M. & Holman, I. (2019). Critical Review of Adaptation Measures to Reduce the Vulnerability of European Drinking Water Resources to the Pressures of Climate Change. Environmental Management, 64: 138–153. DOI: https://doi.org/10.1007/s00267-019-01184-5.

Global Compact Network Poland (2018). Water resources management in Poland 2018. Warsaw, Poland. Available at: https://ungc.org.pl/zarzadzanie-zasobami-wodnymi-w-polsce-2018/ (Accessed: 14 January 2024).

GUS (2020). Poland on the way to SDGs. Report 2020. Statistics Poland. Available at: https://raportsdg.stat.gov.pl/2020/en/cel6.html (Accessed: 12 January 2024).

Hejduk, L., Kaznowska, E., Wasilewicz, M. & Hejduk, A. (2021). Hydrological droughts in the Białowieża primeval forest, Poland, in the years 1951–2020. Forests, 12(12), 1744. DOI: https://doi.org/10.3390/f12121744.

Hurlbert, M. & Osazuwa-Peters, M. (2020). Emerging issues in energy, climate change and sustainability management, Central Europe. Review of Economics and Management, 4(1): 7–12. DOI: https://doi.org/10.29015/cerem.873.

Imteaz, M.A., Ahmad, H. & Hossain, I. (2023). Pioneer Use of Pseudo Sub-Daily Timestep Model for Rainwater Harvesting Analysis: Acceptance over Hourly Model and Exploring Accuracy of Different Operating Algorithms. Sustainability, 15(5): 3870. DOI: https://doi.org/10.3390/su15053870.

Imteaz, M.A., Shanableh, A., Rahman, A. & Ahsan, A. (2011). Optimisation of rainwater tank design from large roofs: A case study in Melbourne, Australia. Resources Conservation and Recycling, 55(11): 1022–1029. DOI: https://doi.org/10.1016/j.resconrec.2011.05.013.

Institute of Meteorology and Water Management - National Research Institute (2022). Klimat Polski 2021 (Climate of Poland 2021 - in Polish). IMGW-PIB 2022.

Institute of Meteorology and Water Management - National Research Institute (2023). Public data of IMWM-PIB. Available at: https://danepubliczne.imgw.pl/ (Accessed: 12 January 2024).

Institute of Meteorology and Water Management - National Research Institute (2021). Poland’s Climate 2020. Warsaw, Poland. Available at: https://www.imgw.pl/badania-nauka/klimat (Accessed: 13 January 2024).

IPCC (2007). Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva. Available at: https://www.ipcc.ch/report/ar4/syr/ (Accessed: 13 January 2024).

IPCC (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge. Available at: https://www.ipcc.ch/report/ar6/wg1/ (Accessed: 13 January 2024).

Kalbarczyk, E. & Kalbarczyk, R. (2020). Typology of climate change adaptation measures in Polish cities up to 2030. Land, 9(10): 351. DOI: 10.3390/land9100351.

Kociuba, D. & Wajs, K. (2021). Impact of the implementation of EU, national and local policies and legislation on the transition to-wards eco-cities in Poland. Bulletin of Geography. Socio-economic Series, 53(53): 105–130. DOI: http://doi.org/10.2478/bog-2021-0026.

Kubiak-Wójcicka, K. & Bąk, B. (2018). Monitoring of meteorological and hydrological droughts in the Vistula basin (Poland). Environmental Monitoring and Assessment, 190: 691. DOI: https://doi.org/10.1007/s10661-018-7058-8.

Kubiak-Wójcicka, K. & Machula, S. (2020). Influence of climate changes on the state of water resources in Poland and their usage. Geoscience, 10(8): 312. DOI: https://doi.org/10.3390/geosciences10080312.

Manungufala, T. (2022). Water Scarcity: Classification, Measurement, and Management. In: Leal Filho, W., Azul, A.M., Brandli, L., Lange Salvia, A., Wall, T. (eds.), Clean Water and Sanitation. Encyclopedia of the UN Sustainable Development Goals. Springer, Cham.

Municipal Water and Sewerage Company MPWiK. Tariffs and price lists. Available at: https://www.mpwik.wroc.pl/strefa-klienta/taryfy-i-cenniki/ (Accessed: 12 January 2024).

MPA: Adaptation plan of the City of Wrocław to climate change by 2030 (2019). Resolution no. XIII/342/19 of the Municipal Council of Wroclaw of September 5, 2019.

Nogueira, M. (2020). Inter-comparison of ERA-5, ERA-interim and GPCP rainfall over the last 40 years: Process-based analysis of systematic and random differences. Journal of Hydrology, 583: 124632. DOI: https://doi.org/10.1016/j.jhydrol.2020.124632.

Marinoski, A. K., & Ghisi, E. (2008). Aproveitamento de água pluvial para usos não potáveis em instituição de ensino: estudo de caso em Florianópolis–SC (Harnessing rainwater for non-potable uses in an educational institution: a case study in Florianópolis-SC – in Portuguese). Ambiente construído, 8(2): 67-84.

Onninen Rainwater tanks. (2024). Available at: https://onninen.pl/produkty/Technika-instalacyjna/Ogrod/Zbiorniki-tworzywowe/Zbiorniki-na-deszczowke (Accessed: 12 January 2024).

PGWWP: Plan to counteract the effects of drought (2021). Regulation of the Minister of Infrastructure dated July 15, 2021. (Dz.U. poz. 1615).

Piasecki, A., Hancz, G., Kaźmierczak, B. & Górski, Ł. (2023). Rainwater management in urban areas in Poland and Hungary. Bulletin of Geography. Socio-economic Series, 62(62): 153–166. DOI: http://doi.org/10.12775/bgss-2023-0040.

Pratap, S. & Markonis, Y. (2022). The response of the hydrological cycle to temperature changes in recent and distant climatic history. Progress in Earth and Planetary Science, 9(1): 30. DOI: https://doi.org/10.1186/s40645-022-00489-0.

Reyes, O. (2023) Understanding Urban Hydrology: Managing Water Resources and Protecting Urban Environments. Hydrology: Current Research, 14(2): 454. DOI: 10.37421/2157-7587.2023.14.454.

Rosiek, K. (2016). Wody opadowe jako przedmiot gospodarowania (Rainwaters as an object for management – in Polish). Gospodarka w Praktyce i Teorii, 44(3): 61–76.

Savelli, E., Mazzoleni, M., Di Baldassarre, G., Cloke, H., & Rusca, M. (2023). Urban water crises driven by elites’ unsustainable consumption. Nature Sustainability, 6(8): 929-940. DOI: https://doi.org/10.1038/s41893-023-01100-0.

Setegn, S.G., Rayner, D., Melesse, A.M., Dargahi, B. & Srinivasan, R. (2011). Impact of climate change on the hydroclimatology of Lake Tana Basin, Ethiopia. Water Resources Research, 47: W04511. DOI: https://doi.org/10.1029/2010WR009248.

Struk-Sokołowska, J., Gwoździej-Mazur, J., Jadwiszczak, P., Butarewicz, A., Ofman, P., Wdowikowski, M. & Kaźmierczak, B. (2020). The Quality of Stored Rainwater for Washing Purposes. Water, 12(1): 252. DOI: https://doi.org/10.3390/w12010252.

Sun, S., Zhou, X., Liu, H., Jiang, Y., Zhou, H., Zhang, C. & Fu, G. (2021). Unraveling the effect of inter-basin water transfer on reducing water scarcity and its inequality in China. Water Research, 194: 116931. DOI: https://doi.org/10.1016/j.watres.2021.116931.

Szwed, M. (2019). Variability of precipitation in Poland under climate change. Theoretical and Applied Climatology, 135: 1003–1015. DOI: https://doi.org/10.1007/s00704-018-2408-6.

Tokarczyk-Dorociak, K., Walter E., Kobierska, K. & Kołodynski, R. (2017). Rainwater management in the urban landscape of Wroclaw in terms of adaptation to climate changes. Journal of Ecological Engineering, 18(6): 171–184. DOI: https://doi.org/10.12911/22998993/76896.

Villarreal, E.L. & Dixon, A. (2005). Analysis of a rainwater collection system for domestic water supply in Ringdansen, Norrköping, Sweden. Building and Environment, 40(9): 1174–1184. DOI: https://doi.org/10.1016/j.buildenv.2004.10.018.

Wichowski, P., Rutkowska, G., Kamiński, N. & Trach, Y. (2019). Analysis of water consumption in the campus of Warsaw University of Life Sciences - SGGW in years 2012-2016. Journal of Ecological Engineering, 20(5): 193–202. DOI: https://doi.org/10.12911/22998993/105473.

World Meteorological Organization (WMO)(2023). WMO-No. 1320. 2023. State of the Climate in Europe 2022. Geneva.

Bulletin of Geography. Socio-economic Series

Downloads

  • PDF
  • XML

Published

2025-03-13

How to Cite

1.
ROSIŃSKA, Weronika, PRZESTRZELSKA, Kornelia, WARTALSKA, Katarzyna, GRZEGORZEK, Martyna, WDOWIKOWSKI, Marcin, CZERSKA, Zuzanna and KAŹMIERCZAK, Bartosz. Rainwater harvesting for watering greenery at Polish university as a climate change adaptation strategy. Bulletin of Geography. Socio-economic Series. Online. 13 March 2025. No. 67, pp. 7-22. [Accessed 25 December 2025]. DOI 10.12775/bgss-2025-0001.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

No. 67 (2025): March

Section

Articles

License

Copyright (c) 2025 Weronika Rosińska, Kornelia Przestrzelska, Katarzyna Wartalska, Martyna Grzegorzek, Marcin Wdowikowski, Zuzanna Czerska, Bartosz Kaźmierczak

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Title, logo and layout of journal Bulletin of Geography. Socio-economic Series are reserved trademarks of Bulletin of Geography. Socio-economic Series.

Stats

Number of views and downloads: 577
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

rainwater harvesting system, modeling, climate change, watering green spaces, sustainable development
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop