Rainwater management in urban areas in Poland and Hungary
DOI:
https://doi.org/10.12775/bgss-2023-0040Keywords
rainwater managment, urban areas, processes of urbanization, sustainable development, geography, planning & developmentAbstract
The issue of rainwater in urban areas has become more topical due to climate change. In many countries around the world, actions are being taken to minimise the negative consequences of extreme weather phenomena, including short-term, heavy precipitation. The work focuses on the analysis and evaluation of activities related to rainwater management in urban areas in Poland and Hungary.
The analysis covers environmental, socio-economic and legal conditions, as well as selected technical solutions related to rainwater management. National- and local-authority measures relating to urban rainwater are discussed and assessed. Legislative solutions in the field of research issues are indicated and compared. The analysis shows differences in approach to elements of rainwater management between the two countries. Attention is given to positive changes in the approaches that national and local authorities and the public take to rainwater. It is indicated that the main barriers to a comprehensive sustainable rainwater management solution in urban areas in Hungary and Poland are financial.
References
Act of 18 July 2001. Water Law. Official Gazette 2015, item 469, (in Polish).
Act of 20 July 2017. Water Law. Official Gazette 2017, item 1566, (in Polish).
Act of March 21, 1988 on Road Transport, Hungary.
Act of December 28, 2011 on Local Governments in Hungary.
Act of 23 June 1995 on Water Law, Hungary.
Act of 22 June 1995 on the Environmental Protection Law, Hungary.
Act of 24 July 1997 on Shaping and Protecting the Built Environment, Hungary.
Almaaitah, T., Appleby, M., Rosenblat, H., Drake, J.,- & Joksimovic, D. (2021). The potential of Blue-Green infrastructure as a climate change adaptation strategy: a systematic literature review. Blue-Green Systems, 3(1): 223-248. DOI: https://doi.org/10.2166/bgs.2021.016.
Battemarco, B.P., Tardin-Coelho, R., Veról, A.P., de Sousa, M.M., da Fontoura, C.V.T., Figueiredo-Cunha, J., Barbedo, J.M.R. & Miguez, M.G. (2022). Water dynamics and blue-green infrastructure (BGI): Towards risk management and strategic spatial planning guidelines. Journal of Cleaner Production, 333: 129993. DOI: https://doi.org/10.1016/j.jclepro.2021.129993.
Bortolini, L. Bettella, F. & Zanin, G. (2021). Hydrological Behaviour of Extensive Green Roofs with Native Plants in the Humid Subtropical Climate Context. Water, 13(1): 44. DOI: https://doi.org/10.3390/w13010044.
Brears, R.C. (2018). Blue and green cities: the role of blue-green infrastructure in managing urban water resources. Springer. DOI: https://doi.org/10.1057/978-1-137-59258-3.
Bruni, G., Reinoso, R., van de Giesen, N.C., Clemens, F.H.L.R. & Veldhuis, J.A.E. (2015). On the sensitivity of urban hydrodynamic modelling to rainfall spatial and temporal resolution. Hydrology and Earth System Sciences, 19: 691-709. DOI: https://doi.org/10.5194/hess-19-691-2015.
Canales, F.A., Gwoździej-Mazur, J., Jadwiszczak, P., Struk-Sokołowska, J., Wartalska, K., Wdowikowski, M. & Kaźmierczak, B. (2020). Long-Term Trends in 20-Day Cumulative Precipitation for Residential Rainwater Harvesting in Poland. Water, 12(7): 1932. DOI: https://doi.org/10.3390/w12071932.
Chan, F.K.S., Griffiths, J.A., Higgitt, D., Xu, S.Y., Zhu, F.F., Tang, Y.T., Xu, Y.Y. & Thorne, C.R. (2018). 'Sponge City' in China-A breakthrough of planning and flood risk management in the urban context. Land Use Policy, 76: 772-778. DOI: https://doi.org/10.1016/j.landusepol.2018.03.005.
Chmielowski, K., Bugajski, P.M. & Kaczor, G. (2017). Effects of precipitation on the amount and quality of raw sewage entering a sewage treatment plant in Wodzisław Śląski. Journal of Water and Land Development, 34: 85-93. DOI: 10.1515/jwld-2017-0041.
Council Directive of 21 May 1991 concerning urban waste water treatment (91/271/EEC). Official Journal of the European Communities 1991, L 135/40.
Custodio, E. (2002). Aquifer overexploitation: what does it mean? Hydrogeology Journal, 10: 254–277. DOI: https://doi.org/10.1007/s10040-002-0188-6.
Dillon, P., Stuyfzand, P., Grischek, T., Lluria, M., Pyne, R.D.G., Jain, R.C., Bear, J., Schwarz, J., Wang, W., Fernandez, E., Stefan, C., Pettenati, M., van der Gun, J., Sprenger, C., Massmann, G., Scanlon, B.R., Xanke, J., Jokela, P., Zheng, Y., Rossetto, R., Shamrukh, M., Pavelic, P., Murray, E., Ross, A., Bonilla Valverde, J.P., Palma Nava, A., Ansems, N., Posavec, K., Ha, K., Martin, R. & Sapiano, M. (2019). Sixty years of global progress in managed aquifer recharge. Hydrogeology journal, 27(1): 1-30. DOI: https://doi.org/10.1007/s10040-018-1841-z.
Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official Journal of the European Communities 2000, L 327/1.
Dziopak, J.A. (2018). A wastewater retention canal as a sewage network and accumulation reservoir. E3S Web Conf. 45: 00016. DOI: https://doi.org/10.1051/e3sconf/20184500016.
Famiglietti, J.S. (2014). The global groundwater crisis. Nature Climate Change, 4: 945–948. DOI: https://doi.org/10.1038/nclimate2425.
Farkas, J.Z., Kovács, Z., & Csomós, G. (2022). The availability of green spaces for different socio-economic groups in cities : a case study of Budapest, Hungary. Journal of Maps, 18(1): 97–105. DOI: http://doi.org/10.1080/17445647.2022.2079433.
Fletcher,T.D., Shuster,W., Hunt, W.F., Ashley, R., Butler, D. Scott, D. A., Trowsdale, S., Barraud, S., Semadeni-Davies, A., Bertrand-Krajewski, J.-L., Mikkelsen, P.S., Rivard, G. Uhl, M., Dagenais D. & Viklander M. (2015). SUDS, LID, BMPs, WSUD and more – The evolution and application of terminology surrounding urban drainage. Urban Water Journal, 12(7): 525-542. DOI: 10.1080/1573062X.2014.916314.
Fórián, S. (2009). Possibility of rainwater utilisation in households (Csapadékvíz hasznosításának lehetősége a háztartásokban). Debreceni Műszaki Közlemények, 1-2: 29-33. Available at: https://eng.unideb.hu/sites/default/files/inline-files/09_1_03.pdf (Accessed: 11 August 2023)
Frumkin, H. (2013). The evidence of nature and the nature of evidence. American journal of preventive medicine, 44(2): 196-197. DOI: https://doi.org/10.1016/j.amepre.2012.10.016.
Ghisi, E., da Fonseca Tavares, D. & Rocha, V.L. (2009). Rainwater harvesting in petrol stations in Brasília: Potential for potable water savings and investment feasibility analysis. Resources, Conservation and Recycling, 54(2): 79-85. DOI: https://doi.org/10.1016/j.resconrec.2009.06.010.
Gleeson, T., Wada, Y., Bierkens, M.F.P. & van Beek L.P.H. (2012). Water balance of global aquifers revealed by groundwater footprint. Nature, 488: 197–200. DOI: https://doi.org/10.1038/nature11295.
Godyń, I., Grela, A., Stajno, D. & Tokarska, P. (2020). Sustainable rainwater management concept in a housing estate with a financial feasibility assessment and motivational rainwater fee system efficiency analysis. Water, 12(1): 151. DOI: https://doi.org/10.3390/w12010151.
Government Decree of December 23, 2000 on designating surface waters and their catchment areas sensitive for urban waste water treatment, Hungary.
Government Decree of July 15, 2021 on the content, the procedure for developing and adopting town plans, as well as certain special legal institutions for town planning, Hungary.
Government Decree of April 29, 2010 on general rules applicable to activities and installations for the use, protection and prevention of damage to water, Hungary .
Government Decree of July 21, 2004 on certain rules for river basin management, Hungary.
Grădinaru, S.R. & Hersperger, A.M. (2019). Green infrastructure in strategic spatial plans: Evidence from European urban regions. Urban forestry & urban greening, 40: 17-28. DOI: https://doi.org/10.1016/j.ufug.2018.04.018.
Gwoździej-Mazur, J., Jadwiszczak, P., Kaźmierczak, B., Kózka, K., Struk-Sokołowska, J., Wartalska, K. & Wdowikowski, M. (2022). The impact of climate change on rainwater harvesting in households in Poland. Applied Water Science, 12(2): 15. DOI: https://doi.org/10.1007/s13201-021-01491-5.
Hardy, D., Cubillo, F., Han, M. & Li, H. (2015). Alternative Water Resources Cluster International Water Association; Alternative Water Resources: A Review of Concepts, Solutions and Experiences. Available at: https://iwa-network.org/wp-content/uploads/2016/03/1454669301-IWA_AWS_final.pdf (Accessed: 7 September 2023).
Jones, M.P. & Hunt, W.F. (2010). Performance of rainwater harvesting systems in the southeastern United States. Resources. Conservation and Recycling, 54(10): 623-629. DOI: https://doi.org/10.1016/j.resconrec.2009.11.002.
Konikow, L.F. (2011). Contribution of global groundwater depletion since 1900 to sea‐level rise. Geophysical Research Letters; 38(17): L17401 DOI: https://doi.org/10.1029/2011GL048604.
Li, X., Stringer, L.C. & Dallimer, M. (2022). The role of blue green infrastructure in the urban thermal environment across seasons and local climate zones in East Africa. Sustainable Cities and Society, 80: 103798. DOI: https://doi.org/10.1016/j.scs.2022.103798.
Maliva, R.G. (2014). Economics of Managed Aquifer Recharge. Water, 6: 1257-1279. DOI: https://doi.org/10.3390/w6051257.
Marszelewski, M. & Piasecki, A. (2021). Legal and water management policy during climate warming in Poland. Bulletin of Geography. Socio-economic Series, 54: 63-75. DOI: https://doi.org/10.2478/bog-2021-0033.
Młyński, D., Wałęga, A., Petroselli, A., Tauro, F. & Cebulska, M. (2019). Estimating maximum daily precipitation in the upper Vistula basin, Poland. Atmosphere, 10(2): 43. DOI: https://doi.org/10.3390/atmos10020043.
Musz-Pomorska, A., Widomski, M.K. & Gołębiowska, J. (2020). Financial sustainability of selected rainwater harvesting systems for single-family house under conditions of eastern Poland. Sustainability, 12(12): 4853. DOI: https://doi.org/10.3390/su12124853.
Nowakowska, M., Kaźmierczak, B., Kotowski, A. & Wartalska, K. (2017). Identyfikacja, kalibracja i walidacja hydrodynamicznego modelu systemu odwadniającego tereny miejskie na przykładzie Wrocławia (Identification, Calibration and Validation of Hydrodynamic Model of Urban Drainage System in the example of the City of Wroclaw - in Polish). Ochrona Środowiska, 39(2): 51-60. Available at: http://www.os.not.pl/docs/czasopismo/2017/2-2017/Nowakowska_2-2017.pdf (Accessed: 15 October 2023)
Ordinance of the Hungarian Minister of the Environment and water management of December 25, 2004 on limit values for discharges of water pollutants and certain rules for their application.
Ordinance of the Hungarian Minister of Rural Development of August 18, 2010 on limit values for pollution of surface water and rules for their application.
Ordinance of the Hungarian Minister of Local Governments and Spatial Development of April 3, 2007 on the calculation of the biological activity value of areas.
Pancewicz, A. (2021). Climate-friendly cities-blue-green infrastructure activities. IOP Conference Series: Materials Science and Engineering, 1203(2): 022049. doi: 10.1088/1757-899X/1203/2/022049.
Puchol-Salort, P., O'Keeffe, J., van Reeuwijk, M. & Mijic, A. (2021). An urban planning sustainability framework: systems approach to blue green urban design. Sustainable Cities and Society, 66: 102677. DOI: https://doi.org/10.1016/j.scs.2020.102677.
Regulation of the Minister of Infrastructure 1 of 12 April 2002 on the technical conditions to be met by buildings and their location.
Regulation of the Minister of the Environment of 18 November 2014 on conditions to be met when discharging wastewater into waters or into the ground, and on substances particularly harmful to the aquatic environment. Journal of Laws of the Republic of Poland 2014, item 1800.
Ritchie, H. & Roser, M. (2018). Urbanization. Our World in Data. Available at: https://ourworldindata.org/urbanization/ (Accessed: 12 October 2023).
Rodriguez-Sinobas, L., Zubelzu, S., Perales-Momparler, S. & Canogar, S. (2018). Techniques and criteria for sustainable urban stormwater management. The case study of Valdebebas (Madrid, Spain). Journal of Cleaner Production, 172: 402-416. DOI: https://doi.org/10.1016/j.jclepro.2017.10.070.
Ronczyk, L., Czigány, S., Horváth, M. & Lóczy, D. (2015). Urban stormwater runoffand pressure on the sewerage system in Pécs, Southwest-Hungary. City Safety Enegry Journal, 1: 32-43. Available at: https://journals.lepenseur.it/index.php/cse/article/view/57/27 (Accessed: 11 August 2023).
Rosenberger, L., Leandro, J., Pauleit, S. & Erlwein, S. (2021). Sustainable stormwater management under the impact of climate change and urban densification. Journal of Hydrology, 596: 126137. DOI: https://doi.org/10.1016/j.jhydrol.2021.126137.
Rosiek, K. (2023). Analysis of operator models for rainwater management in Poland–towards the integrated management model. Ekonomia i Środowisko, 2: 110-139. DOI: 10.34659/eis.2023.85.2.554.
Russo, T.A. & Lall, U. (2017). Depletion and response of deep groundwater to climate-induced pumping variability. Nature Geoscience, 10(2): 105-108. DOI: https://doi.org/10.1038/ngeo2883.
Sakson, G. (2018). Cost analysis of a rainwater harvesting system in Poland. E3S Web of Conferences, 45: 00078. DOI: https://doi.org/10.1051/e3sconf/20184500078.
Sánchez, F.G. & Govindarajulu, D. (2023). Integrating blue-green infrastructure in urban planning for climate adaptation: Lessons from Chennai and Kochi, India. Land use policy, 124: 106455.
Scanlon, B.R., Faunt, C.C., Longuevergne, L., Reedy, R.C., Alley, W.M., McGuire, V.L. & McMahon, P.B. (2012). Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proceedings of the National Academy of Sciences, 109(24): 9320-9325. DOI: https://doi.org/10.1073/pnas.1200311109.
Schmocker-Fackel, P. & Naef, F. (2010). More frequent flooding? Changes in flood frequency in Swicerland since 1850. Journal of Hydrology, 381: 1-8. DOI: https://doi.org/10.1016/j.jhydrol.2009.09.022.
Słyś, D., Stec, A. & Dziopak, J. (2015). The analysis of possibilities of using the rainwater harvesting systems in residential buildings in Poland. In: Hlavínek, P., Zeleňáková, M. (eds) Storm Water Management. Springer Hydrogeology. Springer, 67-81. DOI: https://doi.org/10.1007/978-3-319-25835-5_6.
Sobota, M. (2021). Obowiązek opłaty za odprowadzania do wód – wód opadowych lub roztopowych (kiedy zapłacimy za odprowadzenie deszczówki) (Obligation to pay for discharge into water – stormwater or snowmelt (when we pay for the discharge of rainwater - in Polish). Roczniki Administracji i Prawa, 21(1): 15–21. DOI: 10.5604/01.3001.0015.2491.
Sobota, M., Burszta-Adamiak, E. & Kowalczyk, T. (2022). Legislative opportunities and barriers in stormwater management in urban areas in Poland. Journal of Water and Land Development, 130-138. DOI: 10.24425/jwld.2022.143728.
Starzec, M., Dziopak, J. & Słyś, D. (2020). An analysis of stormwater management variants in urban catchments. Resources, 9(2): 19. DOI: https://doi.org/10.3390/resources9020019.
Stec, A. & Słyś, D. (2017). Rainwater potential use in dormitory building: Drinking water savings and economic costs. Ecological Chemistry and Engineering A, 24(1): 43-64. DOI: 0.2428/ecea.2017.24(1)4.
Suleiman, L. (2021). Blue green infrastructure, from niche to mainstream: Challenges and opportunities for planning in Stockholm. Technological Forecasting and Social Change, 166: 120528. DOI: https://doi.org/10.1016/j.techfore.2020.120528.
Sumisławski, W. (2023). Stormwater and Drainage Management Strategy for the City of Wroclaw, Available at: https://www.wroclaw.pl/zielony-wroclaw/files/dokumenty/408134/Zarz%C4%85dzenie_nr_11756_23_tekst_compressed.pdf (Accessed: 19 October 2023).
Swain, D.L., Langenbrunner, B., Neelin, J.D. & Hall, A. (2018). Increasing precipitation volatility in twenty-first-century California. Nature Climate Change, 8(5): 427-433. DOI: https://doi.org/10.1038/s41558-018-0140-y.
Tamás, J., Nagy, A., Riczu, P. & Fehér, J. (2019). The role and the structure of high resolution 3d city model in urban hydrology (Nagyfelbontású 3d városmodell felépítése és szerepe a települési vízgazdálkodásban.) Országos Települési Csapadékvíz-gazdálkodási Konferencia tanulmányai. 65–76. Available at: https://vtk.uni-nke.hu/document/vtk-uni-nke-hu/K%C3%A9zik%C3%B6nyv_csapad%C3%A9k.pdf (Accessed: 16 August 2023).
Taylor, L. & Hochuli, D.F. (2014). Creating better cities: How biodiversity and ecosystem functioning enhance urban residents’ wellbeing. Urban Ecosystems, 18(3): 747-762. DOI: 10.1007/s11252-014-0427-3.
Taylor, R.G., Scanlon, B., Döll, P., Rodell, M., Van Beek, R., Wada, Y., Longuevergne, L., Leblanc, M., Famiglietti, J.S., Edmunds, M., Konikow, L., Green, .R. Chen, J., Taniguchi, M., Bierkens, M.F.P., MacDonald, A., Fan, Y., Maxwell, R.M. Yechieli, Y., Gurdak, J.J. Allen, D.M., Shamsudduha, M., Hiscock, K., Yeh, P.J., Holman, I. & Treidel, H. (2013). Ground water and climate change. Nature climate change, 3(4): 322-329. DOI: https://doi.org/10.1038/nclimate1744.
Todd, D.K. & Mays, L.W. (2004). Groundwater hydrology. John Wiley & Sons.
Wałęga, A., Kaczor, G. & Stęplewski, B. (2016). The Role of Local Precipitation Models in Designing Rainwater Drainage Systems in Urban Areas: A Case Study in Krakow, Poland. Polish Journal of Environmental Studies, 25: 2139-2149. DOI: https://doi.org/10.15244/pjoes/62961.
Zwęgliński, T. & Balatonyi, L. (2021). Impact of climate change on Hungarian Water Management Strategy as a case study for other European countries. Zeszyty Naukowe SGSP/Szkoła Główna Służby Pożarniczej, 2(78): 127-150. DOI: 10.5604/01.3001.0015.0085.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Adam Piasecki, Hancz Gabriella, Bartosz Kaźmierczak, Łukasz Górski
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Title, logo and layout of journal Bulletin of Geography. Socio-economic Series are reserved trademarks of Bulletin of Geography. Socio-economic Series.Stats
Number of views and downloads: 354
Number of citations: 0