Tracing the drivers of waste generation in Poland (2010–2018): a structural decomposition and input–output approach
DOI:
https://doi.org/10.12775/bgss-2024-0006Keywords
input-output table, waste generation, geography, planning & development, structural decomposition analysis, Leontief modelAbstract
The paper discusses the application of Structural Decomposition Analysis (SDA) in an extended input-output model to trace main sources of waste generation in Poland between 2010 and 2018. Poland is a country that has experienced significant economic growth in recent years, but this growth has also led to a corresponding increase in waste generation. The economy relies on sectors and their production, generating waste in quantities that depend on various factors. SDA, as a quantitative method, can be used to examine the drivers of this waste generation. It provides insights into how changes in final demand and technology have affected the amount of waste generated by sectors over the analyzed period of time. Analyzing the results of the proposed model allows policymakers to develop targeted interventions to reduce waste and promote sustainable development. The paper concludes that this technique can be a valuable tool for environmental analysis, providing a comprehensive view of the connections between economic activity, environmental impacts and waste generation.
References
Abubakar, I.R., Maniruzzaman, K.M., Dano, U.L., AlShihri, F.S., Al Shammari, M.S., Ahmed, S.M.S., Al-Gehlani, W.A.G. & Alrawaf, T.I. (2022). Environmental Sustainability Impacts of Solid Waste Management Practices in the Global South. International Journal of Environmental Research and Public Health, 19(19): 12717. DOI: https://doi.org/10.3390/ijerph191912717.
Adeyemo, O.K. (2003). Consequences of Pollution and Degradation of Nigerian Aquatic Environment on Fisheries Resources. The Environmentalist, 23: 297–306. DOI: https://doi.org/10.1023/B:ENVR.0000031357.89548.fb.
Cantono, S., Heijungs, R. & Kleijn, R. (2008). Environmental Accounting of Eco-innovations through Environmental Input-Output Analysis: The Case of Hydrogen and Fuel Cells Buses. Economic Systems Research, 20(3): 303-318. DOI: https://doi.org/10.1080/09535310802346351.
Castensson, S. (2008). Pharmaceutical Waste. In: Kümmerer, K. (ed.), Pharmaceuticals in the Environment, Springer, Berlin, Heidelberg. DOI: https://doi.org/10.1007/978-3-540-74664-5_31.
Dietzenbacher, E. & Los, B. (1998). Structural Decomposition Techniques: Sense and Sensitivity. Economic Systems Research, 10(4): 307-324. DOI: https://doi.org/10.1080/09535319800000023.
European Environment Agency (2023). Overview of national waste prevention programmes in Europe. Available at: https://www.eea.europa.eu/themes/waste/waste-prevention/countries/2023-waste-prevention-country-fact-sheets/poland_waste_prevention_2023.
Główny Urząd Statystyczny (Statistics Poland) (2022). Ochrona środowiska 2022 (Environment 2022). Available at: https://stat.gov.pl/obszary-tematyczne/srodowisko-energia/srodowisko/ochrona-srodowiska-2022,1,23.html.
Guan, D., Hubacek, K., Weber, C.L., Peters, G.P. & Reiner, D.M. (2008). The drivers of Chinese CO2 emissions from 1980 to 2030. Global Environmental Change, 18(4): 626-634. DOI: https://doi.org/10.1016/j.gloenvcha.2008.08.001.
He, H., Reynolds, Ch.J., Zhou, Z., Wang, Y. & Boland, J. (2019). Changes of waste generation in Australia: Insights from structural decomposition analysis. Waste Management, 83: 142-150. DOI: https://doi.org/10.1016/j.wasman.2018.11.004.
Huang, Q., Chen, G., Wang, Y., Xu, L. & Chen, W. Q. (2020). Identifying the socioeconomic drivers of solid waste recycling in China for the period 2005-2017. Science of The Total Environment, 725: 138137. DOI: https://doi.org/10.1016/j.scitotenv.2020.138137.
Jaseem, M., Kumar, P. & John, R.M. (2017). An overview of waste management in pharmaceutical industry. Pharma Innovation, 6(3), 158-161. Available at: https://www.thepharmajournal.com/archives/?year=2017&vol=6&issue=3&ArticleId=990.
Kaza, S., Yao, L.C., Bhada-Tata, P. & Van Woerden, F. (2018). What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050. World Bank. Available at: https://openknowledge.worldbank.org/entities/publication/d3f9d45e-115f-559b-b14f-28552410e90a.
Lach, Ł. (2020). Tracing Key Sectors and Important Input-output Coefficients: Methods and Applications. Wydawnictwo C. H. Beck.
Lach, Ł. (2022). Optimization-based structural decomposition analysis as a tool for supporting environmental policy-making. Energy Economics, 115: 106332. DOI: https://doi.org/10.1016/j.eneco.2022.106332.
Leontief, W.W. (1936). Quantitative Input and Output Relations in the Economic Systems of the United States. The Review of Economics and Statistics, 18: 105-125. DOI: https://doi.org/10.2307/1927837.
Lim, H.-J., Yoo, S.-H. & Kwak, S.-J. (2009). Industrial CO2 emissions from energy use in Korea: A structural decomposition analysis. Energy Policy, 37(2): 686-698. DOI: https://doi.org/10.1016/j.enpol.2008.10.025.
Lin, X., Pan, H., Qi, L., Ren, Y., Sharp, B. & Ma, C. (2022). An input–output structural decomposition analysis of changes in China’s renewable energy consumption. Environmental Science and Pollution Research, 29: 16678–16691. DOI: https://doi.org/10.1007/s11356-021-16905-9.
Madaleno, M. (2018). Environmental Pollution, Waste Generation and Human Health. Biomedical Journal of Scientific & Technical Research, 10. DOI: https://doi.org/10.26717/BJSTR.2018.08.001671.
Miller, R.E. & Blair, P.D. (2009). Input-output analysis: Foundations and extensions (2nd ed.). Cambridge University Press.
Nakamura, S. & Kondo, Y. (Eds.). (2009). Waste Input-Output Analysis: Concepts and Application to Industrial Ecology (1st ed.). Springer Dordrecht. DOI: https://doi.org/10.1007/978-1-4020-9902-1.
Okeke, E.S., Ezeorba, T.P.C., Okoye, C.O., Chen, Y., Mao, G., Feng, W. & Wu, X. (2022). Environmental and health impact of unrecovered API from pharmaceutical manufacturing wastes: A review of contemporary treatment, recycling and management strategies. Sustainable Chemistry and Pharmacy, 30: 100865. DOI: https://doi.org/10.1016/j.scp.2022.100865.
OECD (2021a). Input-Output Tables (IOTs) (2021 ed.). Available at: https://stats.oecd.org/Index.aspx?DataSetCode=IOTS_2021#.
OECD (2021b). Generation of waste by sector. Available at: https://stats.oecd.org/Index.aspx?DataSetCode=WSECTOR.
OECD (2022). Decision of the Council on the Control of Transboundary Movements of Wastes Destined for Recovery Operations, OECD/LEGAL/0266.
OECD (2023a). Exchange rates (indicator). DOI: https://doi.org/10.1787/037ed317-en.
OECD (2023b). "Prices: Consumer prices", Main Economic Indicators (database). DOI: https://doi.org/10.1787/0f2e8000-en.
Przybylinski, M. (2006). Does Opening the Economy Affect Labor Productivity? Estimating Full Labor Content of Trade for Poland. Comparative Economic Research, 9(1/2): 63-78. Available at: https://www.comparative.uni.lodz.pl/fileadmin/Comparative_Economic_Research/Numery_archiwalne/2006_number_1_2/04_full.pdf.
Przybylinski, M. (2012). Metody i tablice przepływów międzygałęziowych w analizach handlu zagranicznego Polski (Input-output methods and tables in foreign trade analysis of Poland – in Polish). Wydawnictwo Uniwersytetu Łódzkiego. DOI: https://doi.org/10.18778/7525-689-5.
Rok, J. & Zawalińska, K. (2017). Wojewódzkie tablice przepływów międzygałęziowych dla Polski: konstrukcja i interpretacja (Regional Input-Output tables for Polish voivodeships: Their construction and interpretation – in Polish). Studia Regionalne i Lokalne, 3(69): 29-53. DOI: https://doi.org/10.7366/1509499536902.
Rutger, H. (2010). (Towards) a complete database of peer-reviewed articles on environmentally extended input-output analysis. Paper presented at the 18th International Input-Output Conference, Sydney, Australia. Available at: http://www.rutgerhoekstra.com/publications/2010_Hoekstra-Complete%20database%20of%20EEIO%20articles.pdf.
Stauffer, F., Vanhoorne, V., Pilcer, G., Chavez, P-F., Rome, S., Schubert, M.A., Aerts, L. & De Beer, T. (2018). Raw material variability of an active pharmaceutical ingredient and its relevance for processability in secondary continuous pharmaceutical manufacturing. European Journal of Pharmaceutics and Biopharmaceutics, 127: 92-103. DOI: https://doi.org/10.1016/j.ejpb.2018.02.017.
Stachura, P. (2018). Structural decomposition analysis applied to the energy use in Poland. Economic and Environmental Studies, 18(2): 859-877. DOI: https://doi.org/10.25167/ees.2018.46.24.
Świeczewska, I. (2014).The Externalities of Enterprises’ Innovative Activity – An Input-Output Approach. Folia Oeconomica Stetinensia,13(2): 146-157. DOI: https://doi.org/10.2478/foli-2013-0023.
Ueda, T. (2022). Structural Decomposition Analysis of Japan’s Energy Transitions and Related CO2 Emissions in 2005–2015 Using a Hybrid Input-Output Table. Environ Resource Econ, 81: 763–786. DOI: https://doi.org/10.1007/s10640-022-00650-9.
United Nations. Statistical Division. (2008). International Standard Industrial Classification of All Economic Activities (ISIC) (No. 4). United Nations Publications. Available at: https://unstats.un.org/unsd/classifications/Econ/isic.
Vu Thi Ngoc, M., Vuong-Hung, P., Vu Hoang, T., Cao Tho, T. & Nguyen Thi Hong, P. (2023). Firing-Associated Recycling of Coal-Fired Power Plant Fly Ash. Journal of Analytical Methods in Chemistry, 2023: 8597376. DOI: https://doi.org/10.1155/2023/8597376.
World Bank Group (2023). GDP (constant LCU) - Poland. Data. License: CC BY-4.0. Available at: https://data.worldbank.org/indicator/NY.GDP.MKTP.KD?locations=PL.
Ye, J., Zubair, M., Wang, S., Cai, Y. & Zhang, P. (2019). Power production waste. Water Environment Research, 91: 1091-1096. DOI: https://doi.org/10.1002/wer.1200.
Yusuf, R.O., Noor, Z.Z., Abba, A.H., Abu Hassan, M.A. & Mohd Din, M.F. (2012). Methane emission by sectors: A comprehensive review of emission sources and mitigation methods. Renewable and Sustainable Energy Reviews, 16(7): 5059-5070. DOI: https://doi.org/10.1016/j.rser.2012.04.008.
Zhang, X., Zhou, M., Li, J., Wei, L., Dong, Y., Hou, H., Chen, C. & Wang, Z. (2021). Analysis of driving factors on China's industrial solid waste generation: Insights from critical supply chains. Science of The Total Environment, 775: 145185. DOI: https://doi.org/10.1016/j.scitotenv.2021.145185.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Kamil Gacek
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Title, logo and layout of journal Bulletin of Geography. Socio-economic Series are reserved trademarks of Bulletin of Geography. Socio-economic Series.Stats
Number of views and downloads: 304
Number of citations: 0