The Use of GIS Tools for Decision-Making Support in Sustainable Energy Generation on the Example of the Solar Photovoltaic Technology
Using GIS tools to optimize photovoltaic investments
DOI:
https://doi.org/10.12775/bgss-2023-0021Keywords
sustainable energy policies, alternative energy sources, solar energy potential, spatial analysis, GIS toolsAbstract
The study proposes a simple procedure for evaluating the suitability of various locations for the installation of micro-scale solar photovoltaic (PV) systems. The main aim of the study was to determine the applicability of GIS tools for assessing the suitability of different locations for solar energy generation. The applicability of open-source databases in geoinformation analyses was emphasized. The study was conducted in the urban municipality of Mrągowo in the Region of Warmia and Mazury, Poland. Mrągowo is characterized by considerable physiographic diversity, which influenced the results of the study. The evaluation focused on rooftops which are most widely used for the installation of micro-scale solar PV systems. For the purpose of generalization, the results of the evaluation were presented for the districts of Mrągowo, so as to assist state agencies, local governments, and non-public institutions in implementing local policies that support renewable energy generation. The average amount of energy (MWh) that can be generated per building and the total amount of energy (MWh) that can be generated in cadastral districts were calculated to determine the solar energy potential of the study site
References
Aghamolaei, R., Shamsi, M.H. & O’Donnell, J. (2020). Feasibility analysis of community-based PV systems for residential districts: A comparison of on-site centralized and distributed PV installations. Renewable Energy, 157: 793-808. DOI: https://doi.org/10.1016/j.renene.2020.05.024.
An overview of the Solar Radiation toolset. (2022). Available at: https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/an-overview-of-the-solar-radiation-tools.htm (Accessed 20 September 2022).
Arroyo, F.R.M. & Miguel, L.J. (2020). The role of renewable energies for the sustainable energy governance and environmental policies for the mitigation of climate change in ecuador. Energies, 13(15): 3883. DOI: https://doi.org/10.3390/en13153883.
Azizkhani, M., Vakili, A., Noorollahi, Y. & Naseri, F. (2017). Potential survey of photovoltaic power plants using Analytical Hierarchy Process (AHP) method in Iran. Renewable and Sustainable Energy Reviews, 75: 1198-1206. DOI: https://doi.org/10.1016/j.rser.2016.11.103.
Benedek, J., Sebestyén, T.T. & Bartók, B. (2018). Evaluation of renewable energy sources in peripheral areas and renewable energy-based rural development. Renewable and Sustainable Energy Reviews, 90: 516-535. DOI: https://doi.org/10.1016/j.rser.2018.03.020.
Bieda, A. & Cienciała, A. (2021). Towards a renewable energy source cadastre—a review of examples from around the world. Energies, 14(23): 8095. DOI: https://doi.org/10.3390/en14238095.
Biłozor, A., Cieślak, I. & Czyza, S. (2020). An analysis of urbanisation dynamics with the use of the fuzzy set theory-A case study of the city of Olsztyn. Remote Sensing, 12(11): 1784. DOI: https://doi.org/10.3390/rs12111784.
Borfecchia, F., Pollino, M., De Cecco, L., Martini, S., La Porta, L., Marucci, A. & Caiaffa, E. (2013). Integrated GIS and remote sensing techniques to support PV potential assessment of roofs in Urban areas. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Computational Science and Its Applications – ICCSA, 422–437. DOI: https://doi.org/10.1007/978-3-642-39646-5_31.
Brewer, J., Ames, D.P., Solan, D., Lee, R. & Carlisle, J. (2015). Using GIS analytics and social preference data to evaluate utility-scale solar power site suitability. Renewable Energy, 81: 825-836. DOI: https://doi.org/10.1016/j.renene.2015.04.017.
Brodziński, Z., Brodzińska, K. & Szadziun, M. (2021). Photovoltaic farms—economic efficiency of investments in North-East Poland. Energies, 14(8): 2087. DOI: https://doi.org/10.3390/en14082087.
Charlier, R.H. (2009). Renewable Energy. A Global Review of Technologies, Policies and Markets. International Journal of Environmental Studies, 66(6): 798. DOI: https://doi.org/10.1080/00207230600720456.
Choi, Y., Suh, J. & Kim, S.M. (2019). GIS-based solar radiation mapping, site evaluation, and potential assessment: A review. Applied Sciences, 9(9): 1960. DOI: https://doi.org/10.3390/app9091960.
Cieślak, I., Biłozor, A. & Szuniewicz, K. (2020). The Use of the CORINE Land Cover (CLC) Database for Analyzing Urban Sprawl. Remote Sensing, 12(2): 282. DOI: https://doi.org/10.3390/rs12020282.
Cieślak, I. & Górecka, K. (2021). An evaluation of urbanisation processes in suburban zones using land-cover data and fuzzy set theory. Bulletin of Geography. Socio-economic Series, 54(54): 49-62. DOI: https://doi.org/10.2478/bog-2021-0032.
Khanna, D. (2022). Estimate solar power potential. Available at: https://learn.arcgis.com/en/projects/estimate-solar-power-potential/ (Accessed 01 September 2022).
Derski, B. (2016). Większość elektrowni w Polsce produkuje prąd z… Nie, nie z węgla (Most power plants in Poland produce electricity from... No, not coal - in Polish). Available at: https://wysokienapiecie.pl/1847-wiekszosc-elektrowni-w-polsce-produkuje-prad-ze-slonca/ (Accessed 01 September 2022).
Diagnoza strategiczna Gminy Mrągowo. (2021). (Strategic Diagnosis of Mrągowo Municipality). Ekoinfara. Biuro Doradcze. Olsztyn.
Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources. OJ L 328.
Energy Policy of Poland until 2040 (EPP2040) (2022). Ministry of Climate and Environment - Gov.pl website, www.gov.pl (Accessed 12 August 2022).
European Energy Sector Solutions (2022). / S&P Global Market Intelligence, spglobal.com (Accessed on 12 August 2022).
Find the Best Solar Panels in the UK Are solar panels the right choice for your home? (2022). Available at: https://www.greenmatch.co.uk/solar-energy/solar-panels (Accessed 20 September 2022).
Foks, A., Całka, B. & Bielecka, B. (2019). Zastosowanie wielokryterialnych analiz przestrzennych w celu poszukiwania potencjalnej lokalizacji farm fotowoltaicznych w gminie Torzym (Application of multi-criteria spatial analysis to search for potential location of photovoltaic farms in the municipality of Torzym - in Polish). Roczniki Geomatyki, 17(3): 171–182.
Fotowoltaika. Zbiór Artykułów 2009-2012. (2008). Available at: https://www.viessmann.edu.pl.
Fotowoltaika w Mrągowie. Sprawdź, gdzie słońce świeci najmocniej. (2022). Available at: https://ongeo.pl/geoportal/mragowo/fotowoltaika.
Freitas, S., Catita, C., Redweik, P. & Brito, M.C. (2015). Modelling solar potential in the urban environment: State-of-the-art review. Renewable and Sustainable Energy Reviews, 41: 915-931. DOI: https://doi.org/10.1016/j.rser.2014.08.060.
Giyantara, A. Wisyahyadi, Rizqullah, R.B. & Kusuma Priyanto, Y.T. (2021). Analysis of Partial shading Effect on Solar Panel Power Output. Journal of Physics: Conference Series, 1726(1): 012022. DOI: https://doi.org/10.1088/1742-6596/1726/1/012022.
Gorjian, S., Calise, F., Kant, K., Ahamed, M.S., Copertaro, B., Najafi, G., Zhang, X., Aghaei, M. & Shamshiri, R.R. (2021). A review on opportunities for implementation of solar energy technologies in agricultural greenhouses. Journal of Cleaner Production, 285: 124807. DOI: https://doi.org/10.1016/j.jclepro.2020.124807.
Haurant, P., Muselli, M., Pillot, B. & Oberti, P. (2012). Disaggregation of satellite derived irradiance maps: Evaluation of the process and application to Corsica. Solar Energy, 86(11): 3168-3182. DOI: https://doi.org/10.1016/j.solener.2012.08.010.
Hofierka, J. & Kaňuk, J. (2009a). Assessment of photovoltaic potential in urban areas using open-source solar radiation tools. Renewable Energy, 34(10): 2206-2214. DOI: https://doi.org/10.1016/j.renene.2009.02.021.
Hofierka, J. & Kaňuk, J. (2009b). Geographical approaches to the assessment of solar resources in Slovakia (according to the example of a case study in the city of Prešov). In: Ira, V., Lacika, J. (eds). Slovak geography at the beginning of the 21st century. Geographia Slovaca, 26: 191–200.
Huang, P., Ma, Z., Xiao, L. & Sun, Y. (2019). Geographic Information System-assisted optimal design of renewable powered electric vehicle charging stations in high-density cities. Applied Energy, 255: 113855. DOI: https://doi.org/10.1016/j.apenergy.2019.113855.
Ile akumulatorów potrzeba do zasilania domu? (How many batteries are needed to power the house? - in Polish) (2022). Available at: https://www.4sun.eu/blog/panele-fotowoltaiczne/ile-akumulatorow-potrzeba-do-zasilania-domu (Accessed 26 September 2022).
Kádár, P. (2014). Pros and cons of the renewable energy application. Acta Polytechnica Hungarica, 11(4): 211-224. DOI: https://doi.org/10.12700/aph.25.04.2014.04.14.
Knutel, B., Pierzyńska, A., Dębowski, M., Bukowski, P. & Dyjakon, A. (2020). Assessment of energy storage from photovoltaic installations in Poland using batteries or hydrogen. Energies, 13(15): 4023. DOI: https://doi.org/10.3390/en13154023.
Krajewska, M. & Szopińska, K. (2018). Comparative Analysis of Heating, Ventilation and Electricity Costs on the Example of Residential Building in the Near Zero-Energy Standard. Geomatics and Environmental Engineering, 12(3): 55-64. DOI: https://doi.org/10.7494/geom.2018.12.3.55.
Kucuksari, S., Khaleghi, A.M., Hamidi, M., Zhang, Y., Szidarovszky, F., Bayraksan, G. & Son, Y.J. (2014). An Integrated GIS, optimization and simulation framework for optimal PV size and location in campus area environments. Applied Energy, 113: 1601-1613. DOI: https://doi.org/10.1016/j.apenergy.2013.09.002.
Lazzeroni, P., Moretti, F. & Stirano, F. (2020). Economic potential of PV for Italian residential end-users. Energy, 200: 117508. DOI: https://doi.org/10.1016/j.energy.2020.117508.
Lokalny Program Rewitalizacji Miasta Mrągowo na lata 2009-2015 (Local Revitalization Plan for the Town of Mrągowo for 2009-2015 - in Polish). (2009). Available at: https://bipmragowo.warmia.mazury.pl (Accessed 02 August 2022).
Mansouri Kouhestani, F., Byrne, J., Johnson, D., Spencer, L., Hazendonk, P. & Brown, B. (2019). Evaluating solar energy technical and economic potential on rooftops in an urban setting: the city of Lethbridge, Canada. International Journal of Energy and Environmental Engineering, 10(1). DOI: https://doi.org/10.1007/s40095-018-0289-1.
Mayfield, R. (2010). Photovoltaic Design and Installation for Dummies. Solar Energy.
Notice from the Ministry of the Economy of 21 December 2009 on the National Energy Policy until 2030. (2009). Official Journal 2010.
Mokarram, M. Mokarram, M.J. Khosravi, M.R. Saber, A. & Rahideh, A. (2020). Determination of the optimal location for constructing solar photovoltaic farms based on multi-criteria decision system and Dempster–Shafer theory. Scientific Reports, 10: 8200. DOI: https://doi.org/10.1038/s41598-020-65165-z.
Nedović-Budić, Z. (1998). The impact of GIS technology. Environment and Planning B: Planning and Design, 25(5): 681–692. DOI: https://doi.org/10.1068/b250681.
Owusu, P.A. & Asumadu-Sarkodie, S. (2016). A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Engineering, 3(1): 1167990. DOI: https://doi.org/10.1080/23311916.2016.1167990.
Pillot, B., Al-Kurdi, N., Gervet, C. & Linguet, L. (2020). An integrated GIS and robust optimization framework for solar PV plant planning scenarios at utility scale. Applied Energy, 260: 114257. DOI: https://doi.org/10.1016/j.apenergy.2019.114257.
Ramirez Camargo, L. & Stoeglehner, G. (2018). Spatiotemporal modelling for integrated spatial and energy planning. Energy, Sustainability and Society, 8(32). DOI: https://doi.org/10.1186/s13705-018-0174-z.
Rataj, M., Berniak-Woźny, J. & Plebańska, M. (2021). Poland as the EU leader in terms of photovoltaic market growth dynamics—behind the scenes. Energies, 14(21): 6987. DOI: https://doi.org/10.3390/en14216987.
Son, Y., Yoon, Y., Cho, J. & Choi, S. (2022). Cloud Cover Forecast Based on Correlation Analysis on Satellite Images for Short-Term Photovoltaic Power Forecasting. Sustainability, 14(8): 4427. DOI: https://doi.org/10.3390/su14084427.
Shafiee, S. & Topal, E. (2009). When will fossil fuel reserves be diminished? Energy Policy, 37(1): 181-189. DOI: https://doi.org/10.1016/j.enpol.2008.08.016.
Towler, B.F. (2014). The Future of Energy. The Future of Energy. DOI: https://doi.org/10.1016/C2013-0-19049-6.
Uyan, M. (2013). GIS-based solar farms site selection using analytic hierarchy process (AHP) in Karapinar region Konya/Turkey. Renewable and Sustainable Energy Reviews, 28: 11-17. DOI: https://doi.org/10.1016/j.rser.2013.07.042.
Wang, Y. (2019). Solar Photovoltaic Power Generation Technology Research. IOP Conference Series: Materials Science and Engineering, 677(3): 032039. DOI: https://doi.org/10.1088/1757-899X/677/3/032039.
Wymogi, jakie musi spełniać działka pod fotowoltaikę (Requirements that a plot of land for photovoltaics must meet in Polish). (2021). Hymon. Available at: https://hymon.pl/wymogi-jakie-musi-spelniac-dzialka-pod-fotowoltaike/ (Accessed: 3 December 2021).
Yushchenko, A., de Bono, A., Chatenoux, B., Patel, M.K. & Ray, N. (2018). GIS-based assessment of photovoltaic (PV) and concentrated solar power (CSP) generation potential in West Africa. Renewable and Sustainable Energy Reviews, 81(2): 2088-2103. DOI: https://doi.org/10.1016/j.rser.2017.06.021.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Iwona Cieślak, Bartłomiej Eźlakowski
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Title, logo and layout of journal Bulletin of Geography. Socio-economic Series are reserved trademarks of Bulletin of Geography. Socio-economic Series.Stats
Number of views and downloads: 578
Number of citations: 0