Convergence of CO2 emissions in the selected world countries
DOI:
https://doi.org/10.12775/bgss-2023-0006Keywords
CO2 emissions, convergence, renewable energy, World countries, urbanization and urban studiesAbstract
Nowadays, the topic of CO2 emissions has been a subject of intensive debate. There is a significant policy push toward reducing emissions that cause air pollution and other environmental concerns. The aim of this paper is to analyze the CO2 emissions as well as economic growth along with renewable energy use and the level of urbanization in the selected World countries in the period of 1995-2018. In general, almost all of the Northern part of the World was characterized by a high level of CO2 emissions, while the majority of African territory was the least polluted. The empirical result shows that the growth rate of air pollution is much higher in countries that initially had a low level of CO2 emissions, so the convergence process occurred. Conditioning convergence with the renewable energy use and the urbanization level indicates that its speed is higher. Club convergence analysis has proved that well-developed regions in terms of GDP per capita are able to improve the ecological situation despite further economic growth.
References
Ahmad, F., Saeed, Q., Shah, S.M. U., Gondal, M.A. & Mumtaz, S. (2022). Chapter 11 -Environmental sustainability: Challenges and approaches. In: M. K. Jhariya, R.S. Meena, A. Banerjee, & S.N. Meena (Eds.), Natural Resources Conservation and Advances for Sustainability, 243–270. Elsevier. DOI: https://doi.org/10.1016/B978-0-12-822976-7.00019-3.
Anwar, M.N., Iftikhar, M., Khush Bakhat, B., Sohail, N.F., Baqar, M., Yasir, A. & Nizami, A.S. (2019). Sources of Carbon Dioxide and Environmental Issues. In: Inamuddin, A. M. Asiri, & E. Lichtfouse (Eds.), Sustainable Agriculture Reviews, 37: Carbon Sequestration Vol. 1 Introduction and Biochemical Methods, 13-36. Springer International Publishing. DOI: https://doi.org/10.1007/978-3-030-29298-0_2.
Bexell, M. & Jönsson, K. (2017). Responsibility and the United Nations' Sustainable Development Goals. Forum for Development Studies, 44(1): 13–29. DOI: https://doi.org/10.1080/08039410.2016.1252424.
Brown, L.R. (2013). Eco-Economy: Building an Economy for the Earth. Routledge.
Carlsson-Kanyama, A. (1998). Climate change and dietary choices—How can emissions of greenhouse gases from food consumption be reduced? Food Policy, 23(3): 277–293. DOI: https://doi.org/10.1016/S0306-9192(98)000372.
Chasek, P.S., Wagner, L.M., Leone, F., Lebada, A.-M. & Risse, N. (2016). Getting to 2030: Negotiating the Post-2015 Sustainable Development Agenda. Review of European, Comparative & International Environmental Law, 25(1), 5–14. DOI: https://doi.org/10.1111/reel.12149.
Chovancová, J. & Tej, J. (2020). Decoupling economic growth from greenhouse gas emissions: The case of the energy sector in V4 countries. Equilibrium. Quarterly Journal of Economics and Economic Policy, 15(2): 235–251. DOI: https://doi.org/10.24136/eq.2020.011.
Florides, G.A. & Christodoulides, P. (2009). Global warming and carbon dioxide through sciences. Environment International, 35(2): 390–401. DOI: https://doi.org/10.1016/j.envint.2008.07.007.
Fujii, H. & Managi, S. (2016). Economic development and multiple air pollutant emissions from the industrial sector. Environmental Science and Pollution Research, 23(3): 2802–2812. DOI: https://doi.org/10.1007/s11356-015-5523-2.
Gao, Y., Gao, X. & Zhang, X. (2017). The 2 °C Global Temperature Target and the Evolution of the Long-Term Goal of Addressing Climate Change—From the United Nations Framework Convention on Climate Change to the Paris Agreement. Engineering, 3(2): 272–278. DOI: https://doi.org/10.1016/J.ENG.2017.01.022.
Geels, F.W., Sovacool, B.K., Schwanen, T. & Sorrell, S. (2017). The Socio-Technical Dynamics of Low-Carbon Transitions. Joule, 1(3), 463–479. DOI: https://doi.org/10.1016/j.joule.2017.09.018.
Hoang, A.T., Pham, V.V. & Nguyen, X.P. (2021). Integrating renewable sources into energy system for smart city as a sagacious strategy towards clean and sustainable process. Journal of Cleaner Production, 305: 127161. DOI: https://doi.org/10.1016/j.jclepro.2021.127161.
Iglinski, B., Flisikowski, K., Pietrzak, M. B., Kiełkowska, U., Skrzatek, M., Zyadin, A. & Natarajan, K. (2021). Renewable Energy in the Pomerania Voivodeship—Institutional, Economic, Environmental and Physical Aspects in Light of EU Energy Transformation. Energies, 14(24): 8221. DOI: https://doi.org/10.3390/en14248221.
Joshi, M., Hawkins, E., Sutton, R., Lowe, J. & Frame, D. (2011). Projections of when temperature change will exceed 2 °C above pre-industrial levels. Nature Climate Change, 1(8): 407–412. DOI: https://doi.org/10.1038/nclimate1261.
Kanuri, C. (2016). Getting Started with the SDGs in Cities: A Guide for Stakeholders. Sustainable Development Solutions Network.
Keenan, T.F., Hollinger, D.Y., Bohrer, G., Dragoni, D., Munger, J.W., Schmid, H.P. & Richardson, A.D. (2013). Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature, 499(7458): 324–327. DOI: https://doi.org/10.1038/nature12291.
Levin, A., Lin, C.-F. & James Chu, C.-S. (2002). Unit root tests in panel data: Asymptotic and finite-sample properties. Journal of Econometrics, 108(1): 1–24. DOI: https://doi.org/10.1016/S0304-4076(01)00098-7.
Li, X. & Lin, B. (2013). Global convergence in per capita CO2 emissions. Renewable and Sustainable Energy Reviews, 24: 357–363. DOI: https://doi.org/10.1016/j.rser.2013.03.048.
Mneimneh, F., Ghazzawi, H. & Ramakrishna, S. (2022). Review Study of Energy Efficiency Measures in Favor of Reducing Carbon Footprint of Electricity and Power, Buildings, and Transportation. Circular Economy and Sustainability. DOI: https://doi.org/10.1007/s43615-022-00179-5.
Murtagh, F. & Legendre, P. (2014). Ward's Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward's Criterion? Journal of Classification, 31(3): 274–295. DOI: https://doi.org/10.1007/s00357-014-9161-z.
Ordás Criado, C. & Grether, J.-M. (2011). Convergence in per capita CO2 emissions: A robust distributional approach. Resource and Energy Economics, 33(3): 637–665. DOI: https://doi.org/10.1016/j.reseneeco.2011.01.003.
Owusu, P.A. & Asumadu-Sarkodie, S. (2016). A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Engineering, 3(1): 1167990. DOI: https://doi.org/10.1080/23311916.2016.1167990.
Peter, S.C. (2018). Reduction of CO2 to Chemicals and Fuels: A Solution to Global Warming and Energy Crisis. ACS Energy Letters, 3(7), 1557–1561. DOI: https://doi.org/10.1021/acsenergylett.8b00878.
Pierrehumbert, R. (2019). There is no Plan B for dealing with the climate crisis. Bulletin of the Atomic Scientists, 75(5): 215–221. DOI: https://doi.org/10.1080/00963402.2019.1654255.
Pritchard, S.B. & Zimring, C.A. (2020). Technology and the Environment in History. JHU Press.
Sachs, J.D. (2006). The End of Poverty: Economic Possibilities for Our Time. Penguin.
Semenenko, I., Halhash, R. & Sieriebriak, K. (2019). Sustainable development of regions in Ukraine: Before and after the beginning of the conflict. Equilibrium. Quarterly Journal of Economics and Economic Policy, 14(2): 317-339. DOI: https://doi.org/10.24136/eq.2019.015.
Skvarciany, V., Lapinskaite, I. & Volskyte, G. (2021). Circular economy as assistance for sustainable development in OECD countries. Oeconomia Copernicana, 12(1): 11-34. DOI: https://doi.org/10.24136/oc.2021.001.
Solarin, S.A. (2014). Convergence of CO2 Emission Levels: Evidence from African Countries. Journal of Economic Research, 19(1): 65–92. DOI: https://doi.org/10.17256/jer.2014.19.1.004.
Solow, R.M. (1956). A Contribution to the Theory of Economic Growth. The Quarterly Journal of Economics, 70(1): 65–94. DOI: https://doi.org/10.2307/1884513.
Sovacool, B.K. & Brown, M.A. (2010). Twelve metropolitan carbon footprints: A preliminary comparative global assessment. Energy Policy, 38(9): 4856–4869. DOI: https://doi.org/10.1016/j.enpol.2009.10.001.
Studzieniecki, T. & Palmowski, T. (2022). Renewable energy sources in transnational cooperation in the Baltic Sea Region. Bulletin of Geography. Socio-Economic Series, 56: 7–21. DOI: https://doi.org/10.12775/bgss-2022-0010.
Tiwari, C. & Mishra, M. (2017). Testing the CO2 Emissions Convergence: Evidence from Asian Countries. IIM Kozhikode Society & Management Review, 6(1): 67–72. DOI: https://doi.org/10.1177/2277975216674073.
Ward, J.H. (1963). Hierarchical Grouping to Optimize an Objective Function. Journal of the American Statistical Association, 58(301): 236–244. DOI: https://doi.org/10.1080/01621459.1963.10500845.
Warren, R., Price, J., VanDerWal, J., Cornelius, S. & Sohl, H. (2018). The implications of the United Nations Paris Agreement on climate change for globally significant biodiversity areas. Climatic Change, 147(3): 395–409. DOI: https://doi.org/10.1007/s10584-018-2158-6.
Yoro, K.O. & Daramola, M.O. (2020). Chapter 1—CO2 emission sources, greenhouse gases, and the global warming effect. In: M.R. Rahimpour, M. Farsi, & M.A. Makarem (Eds.), Advances in Carbon Capture, 3–28. Woodhead Publishing. DOI: https://doi.org/10.1016/B9780-12-819657-1.00001-3.
Yuan, M. (2021). Geographical information science for the United Nations' 2030 agenda for sustainable development. International Journal of Geographical Information Science, 35(1): 1–8. DOI: https://doi.org/10.1080/13658816.2020.1766244.
Živković, J. (2020). Human Settlements and Climate Change. In: W. Leal Filho, A.M. Azul, L. Brandli, P.G. Özuyar, & T. Wall (Eds.), Climate Action, 573–584. Springer. International Publishing. DOI: https://doi.org/10.1007/978-3-319-95885-9_88.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Tomasz Grodzicki, Mateusz Jankiewicz
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Title, logo and layout of journal Bulletin of Geography. Socio-economic Series are reserved trademarks of Bulletin of Geography. Socio-economic Series.Stats
Number of views and downloads: 506
Number of citations: 0