The Analysis of the visibility and signal strength of the LoRaWAN network in an urbanized area .
A case study of the Bielany campus at the Nicolaus Copernicus University in Toruń
DOI:
https://doi.org/10.2478/bog-2021-0039Keywords
LoRaWAN, visibility, Industry 4.0, Smart City, light pollution, wireless network, ToruńAbstract
In order to assess or determine the overall quality of the surrounding geographical environment, it is necessary to measure selected factors that directly or indirectly affect its condition. The aspects to be monitored include i.a. air pollution levels, surface water purity, soil erosion rates, as well as night sky light pollution, a phenomenon increasingly often observed with the unaided eye. To collect data on the night sky brightness on a regular basis, a remote measuring device was designed and constructed using specialised electronic components, wireless communication, programming code, a high-sensitivity digital light data logger and custom-made programme code. LPWAN networks, including LoRa technology, were developed to support a number of mobile devices where long wireless operation is a priority. To determine the potential use of LoRa technology, as well as to plan the target locations of network access gates (gateways) and the deployment of measuring devices for the collection of environmental data, tests of signal coverage and signal visibility, including measurements of its strength, were carried out in a selected, compact part of the city of Toruń. The paper presents the results of research on the visibility of the LoRa network in a built-up area, such as a university campus, using antennas of two different lengths. The obtained results can be used to design distributed measurement networks in areas with varying density of buildings.
References
Arsovski, S., Kwiatkowski, M., Lewandowska, A., Peshevska, D.J, Sofeska, E., & Dymitrow, M. (2018). Can urban environmental problems be overcome? The case of Skopje—world’s most polluted city. Bulletin of Geography. Socio-economic Series, 40: 17–39. DOI: https://doi.org/10.2478/bog-2018-0012
Bogacz, R., & Krupanek, B. (2013). Porównanie wybranych metod bezprzewodowego odczytu liczników energii elektrycznej (Comparison of selected methods of wireless reading of electricity meters – in Polish). PAK, 59(4): 337–440.
Chaładyniak, D. (2011). Wybrane technologie bezprzewodowej transmisji danych (Selected technologies of wireless data transmission – in Polish). Zeszyty Naukowe Warszawskiej Wyższej Szkoły Informatyki, 5: 87–101.
Gaël, L., Takacs, A., Gardner, E., De Luca, A., Udrea F., & Dragomirescu, D. (2019) LoRaWAN Battery-FreeWireless Sensors Network Designed for Structural Health Monitoring in the Construction Domain. Sensors, 19(7): 1510.
Hänel A., Posch T, Ribas S.J., Aubé M., Duriscoe D., Jechow A., Kollath Z.,Lolkema D.E., Moore, C., Schmidt, N., Spoelstra, H., Wuchterl, G., & Kyba, C.C.M. (2017). Measuring night sky brightness: methods and challenges. Journal of Quantitative Spectroscopy and Radiative Transfer 205: 278–290.
Jechow, A,. Ribas, S.J., Canal-Domingo, R., Hölker, F., Kolláth, Z., & Kyba, C.C.M. (2019). Tracking the dynamics of skyglow with differential photometry using a digital camera with fisheye lens. Journal of Quantitative Spectroscopy and Radiative Transfer 209: 212–223.
Karpińska, D., & Kunz, M. (2019). Light pollution in the night sky of Toruń in the summer season. Bulletin of Geography. Physical Geography Series, 17: 91–100. DOI: https://doi.org/10.2478/bgeo-2019-0017
Karpińska, D., & Kunz, M. (2020). Analysis of light pollution of the night sky in Toruń (Poland). Civil and Environmental Engineering Reports, 30(4): 155–172. DOI: DOI: 10.2478/ceer-2020-0057
Karpińska, D., & Kunz, M. (2021). Rekonstrukcja zasięgu widoczności sieci LoRaWAN na terenie kampusu UMK w Toruniu (Reconstruction of the visibility range of the LoRaWAN network on the campus of the Nicolaus Copernicus University in Toruń – in Polish). In: Młynarczyk, A. (ed.) Środowisko przyrodnicze jako obszar badań, Poznań: Bogucki Wydawnictwo Naukowe.
Kolláth, Z. (2010). Measuring and modelling light pollution at the Zselic Starry Sky Park. Journal of Physics Conference Series 218(1):012001. DOI: 10.1088/1742-6596/218/1/012001
Kunz, M. (2012). Rozwój przestrzenny kampusu akademickiego Uniwersytetu Mikołaja Kopernika w Toruniu (Spatial development of the academic campus of the Nicolaus Copernicus University in Toruń – in Polish). Okólnik TD – Biuletyn Informacyjny KTŚ PTG, 136: 31
Wang, L.K., Pereira, N.C., & Hung, Y.T. (2004). Air Pollution Control Engineering, Handbook of Environmental Engineering Volume 1. New Jersey: Humana Press.
Lorabit, (2019a). Available at: https://lorabit.pl/co-mozna-zrobic-z-protokolem-lora/(10.08.2021).
Lorabit, lorabit.pl, (2019b). Available at: https://lorabit.pl/czestotliwosci-regionalne-lorawan/(12.08.2021).
Lozynskyy, R., Pantyley, V., & Sawicka, A. (2021). Smart city concept in Poland and Ukraine: implementation instruments, problems and successes of cities. Bulletin of Geography. Socio-economic Series, 52: 95–109. DOI: https://doi.org/10.2478/bog-2021-0016
Mikhaylov, K., Stusek, M., Masek, P., Petrov, V., Petäjäjärvi, J., Andreev, S., Pokorny, J., Hosek, J., Pouttu, A., & Koucheryavy, Y. (2018). Multi-RAT LPWAN in Smart Cities: Trial of LoRaWAN and NB-IoT Integration. IEEE International Conference on Communications (ICC), 1–6, DOI: 10.1109/ICC.2018.8422979
MultiConnect® mDotTM MTDOT Developer Guide (2020). Multi-Tech Systems, Inc.
Multi-Tech Systems, Inc. (2020). Available at: https://www.multitech.net/developer/software/ (05.06.2021).
Piątek, Z. (2018) Przemysl-40.pl,. Available at: https://przemysl-40.pl/index.php/(15.08.2021).
Politański, P.; Bortkiewicz, A., & Zmyślony, M. (2016). Wpływ pól elektromagnetycznych zakresu radiowego i mikrofalowego, emitowanych przez urządzenia łączności bezprzewodowej, na funkcjonowanie wybranych elementów układu nerwowego (The influence of electromagnetic fields in the radio and microwave range, emitted by wireless communication devices, on the functioning of selected elements of the nervous system – in Polish). Medycyna Pracy, 67(3): 411–421.
Popławski, B. (1982). Projektowanie szkół wyższych (Designing universities – in Polish). Zespoły dydaktyczno-naukowe, Warszawa.
Qadri, H., Bhat, R.A., Mehmood, M.A., & Dar, G.H. (2020). Fresh Water Pollution Dynamics and Remediation. Singapour: Springer.
Ragam, P. and Nimaje, D.S. (2019). Performance evaluation of LoRa LPWAN technology for IoT-based blast-induced ground vibration system. Journal of Measurements in Engineering, 7(3): 119–133.
Semtech Corporation (2015), AN1200.22 LoRa™ Modulation Basics, Wireless Sensing and Timing Products, Application Note.
Tomaszewski, D. (2020). 11 mitów na temat technologii LoRaWAN (11 myths about LoRaWAN technology – in Polish). Elektronik, 78–81
Turčinović, F., Vuković, J., Božo, S., & Šišul, G. (2020). Analysis of LoRa Parameters in Real-World Communication. 2020 International Symposium ELMAR, 87–90, DOI: 10.1109/ELMAR49956.2020.9219028
Zmyślony, M. (2006). Biofizyczne mechanizmy działania pól elektromagnetycznych a skutki zdrowotne (Biophysical mechanisms of action of electromagnetic fields and health effects – in Polish). Medycyna Pracy, 57(1): 29–39.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Mieczysław Kunz, Dominika Karpińska
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Title, logo and layout of journal Bulletin of Geography. Socio-economic Series are reserved trademarks of Bulletin of Geography. Socio-economic Series.Stats
Number of views and downloads: 415
Number of citations: 4