Zipf ’s Law for cities: estimation of regression function parameters based on the weight of American urban areas and Polish towns
DOI:
https://doi.org/10.2478/bog-2021-0028Keywords
cities, city size distribution, weight of cities, Zipf’s Law, rank-size rule, weighted regressionAbstract
The paper aims at presentation of a methodology where the classical linear regression model is modified to guarantee more realistic estimations and lower parameter oscillations for a specific urban system. That can be achieved by means of the weighted regression model which is based on weights ascribed to individual cities. The major shortcoming of the methods used so far – especially the classical simple linear regression – is the treatment of individual cities as points carrying the same weight, in consequence of which the linear regression poorly matches the empirical distribution of cities. The aim is reached in a severalstage process: demonstration of the drawbacks of the linear parameter estimation methods traditionally used for the purposes of urban system analyses; introduction
of the weighted regression which to a large extent diminishes specific drawbacks; and empirical verification of the method with the use of the input data for the USA and Poland.
References
Anderson, G. Ge, Y. (2005). The size distribution of Chinese cities. Regional Science and Urban Economics, 35(6): 756–776. DOI: https://doi.org/10.1016/j.regsciurbeco.2005.01.003
Auerbach, F. (1913). The law of population concentration (in German). Petermanns Geographische Mitteilungen: 74–76.
Batty, M. (2008). The size, scale, and shape of cities. Science, 319(5864): 769–771. DOI: 10.1126/science.1151419
Berry, B.J.L. (1964). Cities as systems within systems of cities. Papers of the Regional Science Association, 13(1): 146–163. DOI: 10.1007/BF01942566
Berry, B.J.L. Garrison, W.L. (1958). Alternate explanations of urban rank-size relationships. Annals of the Association of American Geographers, 40(1): 83–90. DOI: 10.1111/j.1467-8306.1958.tb01559.x
Berry, B.J.L. Okulicz-Kozaryn, A. (2012). The city size distribution debate: Resolution for US urban regions and megalopolitan areas. Cities, 29(Suplement 1): S17–S23. DOI: 10.1016/j.cities.2011.11.007
Central Statistical Office [GUS], https://stat.gov.pl/
Chen, Y. (2016). The evolution of Zipf’s law indicative of city development. Physica A: Statistical Mechanics and its Applications, 443: 555–567. DOI: 10.1016/j.physa.2015.09.083
Chen, Y. Zhou, Y. (2008). Scaling laws and indications of self-organized criticality in urban systems. Chaos, Solitons and Fractals, 35(1): 85–98. DOI: 10.1016/j.chaos.2006.05.018
Clauset, A. Shalizi, C.R. Newman, M.E.J. (2009). Power-law distributions in empirical data. SIAM review 51(4): 661–703. DOI: 10.1137/070710111
Córdoba, J.C. (2008). On the distribution of city sizes. Journal of Urban Economics, 63(1): 177–197. DOI: 10.1016/j.jue.2007.01.005
Cristelli, M. Batty, M. Pietronero, L. (2012). There is more than a power law in Zipf. Scientific Reports, 2(812): 1–7. DOI: 10.1038/srep00812
Cuberes, D. (2011). Sequential city growth: Empirical evidence. Journal of Urban Economics, 69(5): 229–239. DOI: 10.1016/j.jue.2010.10.002
Dziewoński, K. (1972). General theory of rank-size distributions in regional settlement systems: Reappraisal and reformulation of the rank-size rule. Papers of the Regional Science Association, 29: 73-86. DOI: 10.1007/BF01962286
Eeckhout, J. (2004). Gibrat’s law for (all) cities. American Economic Review, 94(5): 1429–1451. DOI: 10.1257/0002828043052303
Fujita, M. Krugman, P. Venables, A.J. (1999). The spatial economy. MIT PRESS.
Gabaix, X. (1999). Zipf’s Law for Cities: An Explanation. The Quarterly Journal of Economics, 114(3): 739–767. DOI: 10.1162/003355399556133
Gabaix, X. Ioannides, Y.M. (2004). The Evolution of City Size Distributions. In: Handbook of Regional and Urban Economics: 2341–2378. DOI: 10.1016/S0169-7218(04)07053-4
Garmestani, A.S. Allen, C.R. Gallagher C.M. (2008). Power laws, discontinuities and regional city size distributions. Journal of Economic Behavior and Organization, 68(1): 209–216. DOI: 10.1016/j.jebo.2008.03.011
Garner, B. (1967). Models of urban geography and settlement location. In: R.J. Chorley, P. Haggett (Eds), Models in geography, 303–360. Methuen Co. Ltd.
Giesen, K. Zimmermann, A. Suedekum, J. (2010). The size distribution across all cities - Double Pareto lognormal strikes. Journal of Urban Economics, 68(2): 129–137. DOI: 10.1016/j.jue.2010.03.007
González-Val, R. Ramos, A. Sanz-Gracia, F. Vera-Cabello, M. (2015). Size distributions for all cities: Which one is best? Papers in Regional Science, 94(1): 93–115. DOI: 10.1111/pirs.12037
Ioannides, Y.M. Overman, H.G. (2003). Zipf’s law for cities: An empirical examination. Regional Science and Urban Economics, 33(2): 127–137. DOI: 10.1016/S0166-0462(02)00006-6
Jażdżewska, I. (2006). K. Zipf’s rank-size rule in search of the Best method of point approximation (in Polish). Czasopismo Geograficzne, 77(3): 206-219.
Jażdżewska, I. (2017). Spatial and dynamic aspects of the rank-size rule method. Case of an urban settlement in Poland. Computers, Environment and Urban Systems, 62: 199–209. DOI: 10.1016/j.compenvurbsys.2016.11.006
Jefferson, M. (1939). The Law of the Primate City. Geographical Review, 29(2): 226-232. DOI: 10.1177/019263656104526231
Jiang, B. Yin, J. Liu, Q. (2015). Zipf’s law for all the natural cities around the world. International Journal of Geographical Information Science, 29(3): 498-522. DOI: 10.1080/13658816.2014.988715
Knudsen, T. (2001). Zipf’s Law for Cities and Beyond: The Case of Denmark. American Journal of Economics and Sociology, 60(1): 123–146. DOI: 10.1111/1536-7150.00057
Lotka, A. (1925). Elements of Physical Biology, 435. Williams and Wilkins Company. https://doi.org/10.2105/AJPH.15.9.812-b
Newman, M.E.J. (2005). Power laws, Pareto distributions and Zipf’s law. Contemporary Physics, 46(5): 323-351. DOI: 10.1080/00107510500052444
Pumain, D. (1989). Spatial dynamics and urban models. In: J. Hauer, H. Timmermans, N. Wrigley (Eds), Urban Dynamics and Spatial Choice Behaviour, 155–173. Springer. Netherlands.
Pumain, D. Swerts, E. Cottineau, C. Vacchiani-Marcuzzo, C. Ignazzi, A. Bretagnolle, A. Delisle, F. Cura, R. Lizzi, L. Baffi, S. (2015). Multilevel comparison of large urban systems. Cybergeo: European Journal of Geography, 7. DOI: 10.4000/cybergeo.26730
Richardson, H.W. (1973). Theory of the distribution of city sizes: Review and prospects. Regional Studies, 7(3): 239–251. DOI: https://doi.org/10.1080/09595237300185241
Robson, B.T. (2012). Urban growth: An approach. DOI: 10.4324/9780203716649
Rosen, K.T. Resnick, M. (1980). The size distribution of cities: An examination of the Pareto law and primacy. Journal of Urban Economics, 8(2): 165–186. DOI: 10.1016/0094-1190(80)90043-1
Rossi-Hansberg, E. Wright, M.L.J. (2007). Urban Structure and Growth. Review of Economic Studies, 74(2): 597–624. DOI: 10.1111/j.1467-937X.2007.00432.x
Sokołowski, D. (2001). Application of the weighted regression model to the approximation of rank-size graph (in Polish). In: H. Rogacki, H. (Ed.). Koncepcje teoretyczne i metody badań geografii społeczno-ekonomicznej i gospodarki przestrzennej, 169–178. Bogucki Wydawnictwo Naukowe. Poznań.
Sokołowski, D. (2014). New towns in Poland. Bulletin of Geography. Socio-economic Series, 23: 149-160. DOI: https://doi.org/10.2478/bog-2014-0010
Szymańska, D. (2007). Urbanizacja na świecie (Urbanization in the world) (wydanie pierwsze 2007; wydanie drugie 2008), Wydawnictwo Naukowe PWN, Warszawa, s. 390.
Song, S. Zhang, K.H. (2002). Urbanisation and city size distribution in China. Urban Studies, 39(12): 2317–2327. DOI: 10.1080/0042098022000033890
Soo, K.T. (2005). Zipf’s Law for cities: A cross-country investigation. Regional Science and Urban Economics, 35(3): 239–263. DOI: 10.1016/j.regsciurbeco.2004.04.004
Stewart, J.Q. (1947). Empirical Mathematical Rules concerning the Distribution and Equilibrium of Population. Geographical Review, 37(3): 461-485. DOI: 10.2307/211132
Strutz, T. (2011). Data Fitting and Uncertainty: A practical introduction to weighted least squares and beyond. Vieweg + Teubner. DOI: 10.1007/978-3-8348-9813-5
US Census Bureau, following: Thomas Brinkhoff, https://www.citypopulation.de/USA.html
Veneri, P. (2016). City size distribution across the OECD: Does the definition of cities matter? Computers, Environment and Urban Systems, 59: 86–94. DOI: 10.1016/j.compenvurbsys.2016.05.007
Xu, Z. Harriss, R. (2010). A spatial and temporal autocorrelated growth model for city rank-size distribution. Urban Studies, 43: 14–24. DOI: 10.1177/0042098009348326
Zipf, G.K. (1941). National Unity and Disunity, The Nation as a Bio-Social Organism. The Principia Press Inc.: Blomington, IN.
Zipf, G.K. (1949). Human Behaviour and the Principle of Least Effort: An Introduction to Human Ecology. Addison-Wesley: Cambridge, MA.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Bulletin of Geography. Socio-economic Series
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Title, logo and layout of journal Bulletin of Geography. Socio-economic Series are reserved trademarks of Bulletin of Geography. Socio-economic Series.Stats
Number of views and downloads: 407
Number of citations: 0